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“You see me now, a veteran

Of a thousand psychic wars

I’ve been living on the edge so long

Where the winds of limbo roar”

(Blue Öyster Cult)





RESUMO

NASCIMENTO, F. Animação Digital de Avalanches de Neve. 2024. 231 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

A animação digital baseada em física de fluidos, como fumaça, água e fogo, fornece alguns dos
efeitos visuais mais impressionantes da indústria do entretenimento. Porém, diversos fenômenos
ainda precisam ser totalmente compreendidos, e suas formulações ainda são foco de intensa
pesquisa em outras áreas, como Física e Engenharia Civil. É o caso das avalanches de neve, cuja
modelagem numérica é desafiadora devido à sua dinâmica complexa. A manipulação de tais
fenômenos é relativamente nova na computação gráfica e existem ainda poucos trabalhos sobre o
assunto. Este projeto tem por objetivo trazer estas formulações para o campo da computação
gráfica no que diz respeito à animação digital de avalanches de neve.

Palavras-chave: Computação Gráfica, simulação física, animação digital, animação baseada em
física, renderização.





ABSTRACT

NASCIMENTO, F. Digital 3D Animation of Powder-Snow Avalanches. 2024. 231 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) – Insti-
tuto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2024.

Physically based animation of fluids such as smoke, water, and fire provides some of the most
stunning computer graphics in the entertainment industry. However, several phenomena still
need to be fully understood, and their formulations are still the focus of intense research in
other fields, such as Physics and Civil Engineering. That is the case of snow avalanches, whose
numerical modeling is challenging due to their complex dynamics. The manipulation of such
phenomena is new to computer graphics, and few works exist. This project aims to bring such
formulations to the field of computer graphics regarding the digital animation of powder-snow
avalanches.

Keywords: Computer Graphics, physics simulation, Digital Animation, physically based anima-
tion, rendering.
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CHAPTER

1
INTRODUCTION

Figure 1 – Visual effects of a snow avalanche from the movie War for the Planet of the Apes © 20th
Century Fox.

Source: Matt Reeves (20th Century Fox) (2017).

The physically based digital animation of fluids such as smoke, water, and fire provides
some of the most stunning visuals in computer graphics — see Figure 1. Several materials —
e.g., snow, viscous liquids, mud — provide phenomena of great interest to visual applications
but present complex physical properties that can be harder to simulate than usual simplified
fluid models. These materials present solid-like resistance to deformation while also undergoing
large strains characteristic of fluids. Such complexities become apparent in large-scale natural
phenomena, such as snow avalanches, where multiple materials suffer enormous transformations
through violent motion.
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Figure 2 – The mesmerizing effect of large scale natural phenomena. (a) Snow avalanche in the Lyngen
Alps of Northen Norway. (b) Mount Pinatubo eruption in 1991.

(a)

Source: Wallner, Chris (2017).

(b)

Source: Erik Klemetti (2016).

The destructive power of natural disasters produces both fear and fascination for humans.
Large-scale phenomena, such as volcanic eruptions and snow avalanches, challenge our percep-
tions of life and death while carrying a mesmerizing effect — see Figure 2. Although fearful
and harmful in real life, such events appeal to the entertainment industry (VENKATASAWMY,
2012), composing scenes in movies with great dramaticity and visual impact — see Figure 3.

Figure 3 – Visual effects of a snow avalanche from the movie Black Widow © Marvel Studios.

Source: Failes, Ian (2021).

Powder snow avalanches, also called dry avalanches, are particle-laden gravity currents
(motions caused by gravity) formed in steep slopes, displacing vast amounts of snow down
the hill. The avalanche starts with layers of packed snow detaching from the ground due to
gravity. As the flow speed increases, the surrounding air gets turbulent, stirring up snow particles.
Small particles may be suspended by turbulent air, thus forming a powder snow avalanche layer,
which is self-accelerated by gravity. The deeper layers of dense snow suffer from fluidization,
characterizing the fluid-like behavior of the avalanche.
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Like any physical phenomena of diverse scales, from small grain interactions to massive
mass movements, the motion of a snow avalanche obeys physical laws expressed by mathematical
equations. The solution of such equations describes the snow avalanche’s physical state over
time, i.e., the deformation and movement on top of the terrain. The visual appearance of the
avalanche body at each point in time composes the frame images of a digital animation. Hence,
developing numerical methods for approximating solutions to Partial Differential Equations is
crucial to achieving realistic animations.

The present text proposes a new method to produce physically based digital animations
of powder snow avalanches. As pointed out in the following chapters, the mathematical modeling
of a snow avalanche is still an open and challenging problem. A powder snow avalanche is a
large-scale phenomenon of complex physical processes that are still not fully understood, as
field measurements pose inherent difficulties. Therefore, the proposal combines different models
to construct a full powder snow avalanche simulation. Figure 4 shows examples of resulting
animations.

Figure 4 – Screenshots of animations produced with the proposed method. (a) A powder cloud descending
a ramp. (b) A large-scale avalanche in a natural terrain.

Source: Elaborated by the author.

A single avalanche presents multiple flows, called layers, interacting with one another,
where snow undergoes chemical and physical transformations. Such complexity manifests in
the intricate mass and energy exchanges between the layers. The relevant layers are the dense-
snow layer, the transition layer, and the powder-snow layer — see Figure 5. The proposed
method models each layer in a particular way with a different set of equations and simplifying
assumptions:

• The overall method consists of two simulations: the dense-snow layer simulation and the
powder-snow layer simulation;

• The method couples the two simulations in only one direction, where the dense snow layer
influences the powder-snow layer, but the latter does not affect the former;

• The method does not simulate the transition layer. Instead, boundary conditions in the
powder-snow layer model implicitly represent the transition layer.
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Figure 5 – Snow avalanches consist of layers characterizing distinct flow types. The dense snow layer
consists of large chunks of snow that slide over the terrain surface. As the packs of snow
break, the turbulent air suspends snow particles, producing a cloud, the powder snow layer.
The transition layer lies between the two layers above and represents the turbulent region that
feeds the powder cloud.

Source: Elaborated by the author.

Therefore, the method simulates both layers sequentially. In fact, given the proper
boundary conditions for the powder-snow layer model, the simulation of the powder-cloud is
agnostic of the method utilized for simulating the dense-snow layer. The main contributions of
this work are:

• A novel method for producing physically-based digital animations of powder-snow
avalanches;

• A procedural entrainment mechanism to transfer mass and energy to the powder-snow
layer simulation;

• A survey on the research of snow avalanches;

• A method to compute the entrainment based on the surface distance to the leading edge of
the avalanche;

• A method to compute the distance field in the avalanche based on the velocity and terrain
geometry;

• A method to couple 2-dimensional to 3-dimensional simulations;

• A method to rasterize volumetric data of arbitrary cell shapes into a voxel grid;

The following section provides a brief overview of the proposed method, followed by
section 1.2, outlining the text organization.
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1.1 Method Outline

Figure 6 – Overall method workflow.

As mentioned, the method performs two sequential simulations: the dense-snow layer
(DSL) simulation and the powder-snow layer (PSL) simulation. Figure 6 provides a general
overview of the workflow for the whole method described by the following steps:

1. Topographic terrain data is converted into a 2-dimensional surface that determines the cell
elements in the DSL grid. The DSL grid consists of flat polygonal cells, represented in
Figure 6 as one-dimensional segments. The DSL simulation outputs two surface fields1:
the height h and the velocity u for each DSL grid cell and simulation step.

2. The resulting field values of the DSL simulation get into the PSL simulation as boundary
condition values for the bottom region of the PSL grid. The PSL grid consists of 3-
dimensional cells, represented as squares in Figure 6, that decompose all the volume on
the top of the terrain, on which the powder cloud will evolve. The cloud originates from
the ejection of snow and air entrainment, mainly in the avalanche’s front region. Therefore,
the boundary conditions inject snow based on the front position, velocity, and height of the
DSL. The DSL data is spatially and temporally interpolated2 into the PSL grid’s bottom
faces for each time step of the PSL simulation.

3. The PSL simulation generates a volumetric density field representing the powder-snow
cloud for every simulation time step. The height surface field h of the DSL simulation
generates a surface mesh representing the DSL body. The resulting volumetric field for the
PSL and the DSL surface mesh compose the frame data for the final animation.

1 Here, a surface field is a scalar/vector field defined in the cells of the two-dimensional patch that
composes the numerical grid. Each cell holds a value of the field.

2 The DSL grid and the bottom surface of the PSL grid are not necessarily the same mesh. Their faces
may differ in number, shape, and alignment.
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1.2 Text Organization
The following items describe the contents of the chapters contained in this text. At the

end of each chapter, a section of remarks summarizes essential information that helps maintain
the overall picture. The chapters are:

• Chapter 2: An introduction to snow avalanches from the geophysical point of view, going
through the physical processes that form an avalanche and the categories of such phenom-
ena. The chapter offers the general notion of the dynamics of powder-snow avalanches
and their dimensions.

• Chapter 3: A relatively extensive exploration of the scientific research on the topic. The
chapter chronologically lists a series of works from the past decades and delineates the
main branches of models developed in the field.

• Chapter 4: The presentation of the proposed method by detailing the mathematical models
chosen for the dense-snow layer and the powder-snow layer simulations, including the
transference of mass and energy between both simulations. The chapter also delves into
the numerical discretizations of the equations necessary for their solutions.

• Chapter 5: The completion of the workflow, giving the final steps for producing the
animations. The chapter gives examples of animations produced with the method but also
explores experiments to discuss the different parameters present in the models.

• Chapter 6: Conclusions and discussions about the method and results presented in the
previous chapters. The chapter also explores the limitations encountered in the current
model and improvements for future work.

The end of the document contains the appendices that support the chapters:

• Appendix A: Background Concepts

• Appendix B: A brief introduction to the Finite Volume and Finite Area methods, the
numerical tool utilized in Chapter 4.

• Appendix C: An introduction to the software package OpenFOAM, the code used for
solving the numerical systems in Chapter 4.
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CHAPTER

2
ANATOMY OF SNOW AVALANCHES

The general concept of an avalanche consists of a large amount of mass sliding down
an incline due to gravity. Once friction and cohesion forces fail to hold the material over the
terrain, gravity force becomes prevalent and initiates motion. The surrounding fluid may support
sediment transport during motion, increasing velocity, runout distance1, and mass. Many fields of
science study such sediment and fluid flows and define classifications for the different avalanches.

This chapter briefly introduces the dynamics of Powder-Snow Avalanches (PSAs), a
member of the family of mixed-type avalanches, and the different categories of natural mass mo-
tion phenomena. The chapter starts by presenting the common classification of snow avalanches,
then section 2.2 on page 52 delves into the details of PSAs. The chapter finishes with a remarks
section 2.3 on page 55, listing the essential concepts relevant to the rest of the text.

2.1 Gravity Flows

Physical phenomena like snow avalanches belong to the broad family of mass transport
phenomena called gravity flows. Gravity Flows comprise the various natural phenomena char-
acterized by the sediment transport under the action of gravity. Here, sediment means all the
particulate substances, from thin snow powder to huge boulders. Due to its particulate nature,
sediment will also be referred to as granular material throughout the text.

The interstitial fluid2 plays a central role in removing friction forces, adding cohesion,
causing lubrication, or supporting the motion through turbulence and buoyancy. Shortly, the
following properties have a significant effect on the behavior of granular materials:

1 The runout distance, avalanche runout, is the final segment of an avalanche path where the avalanche
slows down and stops.

2 The interstitial fluid is the fluid that fills the space between sediment grains, such as the mixture of
water and dirt in mudflows.
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• Cohesion creates tangential forces between grains due to humidity or electrostatic forces.
For example, the thin liquid films’ surface tension between two snow particles is responsi-
ble for cohesion in melting snow3. Cohesion is more significant in rest states, as motion
may generate larger forces that overcome cohesive forces. In snow avalanches, cohesion
delays the initial break-off and keeps large snow chunks from fragmenting.

• Lubrication reduces the friction between grains and other bodies due to the presence of
another medium called the lubricant. In many flows, the motion produces the lubricant.
In snow avalanches, the heat generated by the friction between the sliding snow and the
terrain maintains a thin layer of liquid water that lubricates the flow. The presence of
lubricants may increase runout distances even in low slopes.

• Fluidization reduces the internal friction related to grain-to-grain collisions by balancing
out the gravity force with the buoyancy force generated by the interstitial fluid. The conse-
quence is the fluid-like behavior of the granular material. In snow avalanches, fluidization
generally occurs in steep slopes as the air trapped between snow grains temporarily dis-
places the snow. Compared to lubrication, which happens on the boundaries of the flow,
fluidization happens internally. Similarly, liquefaction happens when the downward motion
of the granular material displaces the fluid upwards (LOWE, 1976).

In many flows, the interstitial fluid is the same as the ambient fluid, which is the case for
the powder cloud in PSAs. Many authors define Sediment Gravity Flows when the sediment’s
gravity-driven motion causes the fluid’s motion, and Fluid Gravity Flows the inverse – see
Figure 7 on next page. Middleton and Hampton (1973) classifies different sediment gravity flows
into four categories based on the sediment support mechanism:

• Debris Flows, also referred to as mudflows, characterize flows with high cohesive strength.
The cohesion originates from the nature of the constituent materials, generally water, dirt,
and rocks4. A mixture of water and fine sediments supports sediment, allowing the motion
of large blocks of mass — see Figure 8a.

• Grain Flows are cohesionless flows supported by direct grain-to-grain interactions. Due
to grain geometries, shearing deformations lead to volume expansion5. The interstitial
fluid is the same as the ambient fluid, which can also be water. Examples of grain flows
are sand avalanches — see Figure 8b.

• Fluidized Flows occur under fluidization processes. In the presence of interstitial fluid,
the grains disperse, and fluid motion takes into play. The injection of air in the bottom

3 Conversely, the lack of liquid water in colder temperatures makes snow less cohesive.
4 Debris flows have enough strength to carry much more than dirt and rocks. Due to its enormous mass

and fluid behavior, the flow can take debris of large sizes, such as trees and boulders.
5 Granular materials are also called dilatant materials.
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of a sand tank is an example of such a phenomenon. Lowe (1979) considers a separate
category called Liquified Flow, where support comes from the pore-fluid pressure.

• Turbidity Currents are particle-driven flows that generally occur on the ocean floor and
are responsible for sediment transport to the deep sea. The density difference between the
ambient fluid (water) and the sediment mixture drives the motion. The suspension caused
by the turbulence of the fluid supports the motion, which may take even days and cover
vast distances of more than 1000 km (TALLING et al., 2022).

Figure 7 – Sediment Gravity Flows are motions of mass motivated by gravity. As sediment moves, the
ambient fluid gets into motion as well. In the presence of an interstitial fluid, effects such
as lubrication, cohesion, and buoyancy may come into play, supporting the motion (left). If
sediment grains, such as sand underwater or snow powder in the air, disperse enough, the
turbulence of the ambient fluid may also support the motion.

Source: Elaborated by the author.

Figure 8 – Sediment flows cover various grain flow properties, such as cohesion. For example, debris
flows are highly cohesive, while sand flows are cohesionless. (a) The 1/9 Debris Flow event
on January 9, 2018, triggered in Santa Barbara County, United States. (b) Tongue-shaped
grain-flow lobes on the surface of sand dunes.

(a)

Source: Hill (2019).

(b)

Source: Barale (2015).
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Over the years, the classification above proved insufficient due to the diversity and
complexity of gravity flows. Dasgupta (2003) suggests that the flows listed above are too different
to be defined under the same category of sediment gravity flows. Moreover, the properties of
lubrication, fluidization, and cohesion are not necessarily mutually exclusive, and neither the
flow types are. A powder-snow avalanche, for example, contains a mixture of flow types and
properties. Therefore, the gravity flows were further classified based on material type, sediment
concentrations, velocity, grain size distributions, flow front speeds, shear strength, shear rate,
and other criteria (VARNES, 1978; PIERSON; COSTA, 1987).

Figure 9 – Characteristics of different sediment transport/motion types.

Source: Adapted from Takahashi (2014).

One important example is the classification proposed by Takahashi (2014), represented in
Figure 9, focuses on particle concentration and the support mechanism. For example, particles are
dispersed in the flowing body for the five upper blocks categories, while the lower three blocks
present moving bodies composed mainly of agglomerates of soil and rocks. As the interaction
of solid and fluid forces distinguishes debris flows physically, arrows connecting lower blocks
and upper blocks on the diagram represent the water concentration. Each block lists the effects
particular to each flow type that go beyond the commonly operating stresses and the participating
materials.

In parallel, a Gravity Current is a term geologists use to characterize flows motivated by
density differences between two fluids. Gravity currents, sometimes called buoyancy currents,
are primarily horizontal flows where a fluid propagates through the ambient fluid with lesser or
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greater density, such as sand storms and bores — see Figure 10. Many authors generalize gravity
currents to encompass phenomena such as pyroclastic and lava streams initiated by volcanic
eruptions, suspension flows, turbidity currents, and other gravity-controlled flows, including
debris flows. In this context, an airborne powder-snow avalanche is considered a large-scale
turbidity current.

Figure 10 – Examples of gravity currents. (a) A massive haboob (sand storm) hits the city of Phoenix in
the United States. (b) Bores in the atmosphere making the phenomenon called the ’Morning
Glory’ over Australia.

(a)

Source: Stewart (2018).

(b)

Source: Petroff (2009).

In the realm of avalanches, characterized by motions of mass in mountain inclines
ranging from landslides to rockfall, Pudasaini and Hutter (2007) distinguishes three large groups:

• Flow Avalanches are dense gravity-driven flows where the role of solid particles dominates,
and the interstitial fluid is minor or negligible. Its particles vary with sizes ranging from
sizes of clay to boulders. Such flows are present in certain types of snow avalanches, and
many debris flows, having similarities with dense granular flows. For example, in certain
dense pyroclastic flows, the solid volume fraction can be of the order of 70%.

• Powder Avalanches consist of light powdery grains with low or no cohesion. These
avalanches are much less dense than flow avalanches and can be called turbulent-type

flows of airborne particles. Powder avalanches are characterized by their large volume and
the rapid wind that accompanies the flow. For instance, the powder avalanche formed in a
PSA can move at high velocities as impressive 100 m · s−1 and form clouds of 100 m in
height (SIMPSON, 1999).

• Mixed-type Avalanches are flow avalanches overlaid by a powder avalanche. This category
of avalanches presents multiple layers in which a distinct physical behavior character-
izes the layer’s dominant dynamical processes. Generally, the process starts with a flow
avalanche that produces enough motion and powder mass to generate a powder avalanche.
The dense layer feds the powder layer as the chunks of material break into smaller pieces
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and eventually into particles. The turbulent motion of the ambient fluid ejects the parti-
cles and forms the upper layer powder avalanche. Examples of mixed-type avalanches
appear in turbidity currents, pyroclastic volcanic eruptions, dust clouds in the desert, and
powder-snow avalanches.

Due to their diverse natures, flow avalanches differ significantly from powder avalanches6. For
example, flow avalanches have significant basal friction and are bound to the terrain following
small-scale features, while powder avalanches follow just the large-scale topography. Table 1
lists the fundamental differences encountered in both flows. In particular, notice the contrast in
the scales for density and velocity values.

Table 1 – Table extracted from Pudasaini and Hutter (2007), showing the differences between the two
type of avalanches. The values in the table are typical values measured in such flows.

Flow Avalanches Powder Avalanches
Flow type Laminar Turbulent
Velocities [m · s−1] ∼ 5−30 ∼ 40−100
Density [kg ·m−3] ∼ 100−400 ∼ 5
Flow height [m] ∼ 1−10 ∼ 100

Environmental factors, such as temperature and humidity, affect the physical state of
snow, creating different behaviors of snow avalanches. Therefore, snow avalanches receive
further classifications that distinguish their diverse characteristics. The WSL Institute for Snow
and Avalanche Research SLF (SLF, 2022) lists the following categories for snow avalanche
types:

• The snow cover on the surface of a mountain is the accumulation of several snowfalls that
occur over time. Throughout the days, the precipitations might bring snow in different
conditions, such as particle sizes, temperature, and humidity. The stacking of different
snowfalls makes the snow cover a stratified layer consisting of sub-layers of variable
strength. The weight of the upper layers and the slope of the terrain impose mechanical
forces that can lead to the failure of weak layers. When a weak layer of significant area lies
underneath meters of snow collapses, a fracture quickly propagates throughout the snow
cover. The fracture causes the sudden detachment of the whole body of snow that enters
motion. The heavy snow slides freely on top of the weak layer underneath, producing the
so-called Slab Avalanches7 – see Figure 11a and Figure 11b.

• Loose Snow Avalanches, also called sluffs or point releases, generally occur during
quick temperature increases. The release of loose snow starts from a single point, and the

6 Some authors refer to PSAs as powder avalanches, which can be confusing when dealing with different
classifications. Here, PSAs are mixed-type avalanches.

7 Slab avalanches are responsible for 90% of the deaths that occur in snow avalanches because of the
fast acceleration and large area they have. Skiers and mountaineers usually find themselves suddenly
inside the avalanche perimeter at the time of release.
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avalanche entrains snow as it fans downhill. Loose snow avalanches can reach large sizes
due to wet snow entrainment – see Figure 11c and Figure 11d.

• In Gliding Avalanches, the entire snowpack is released, but they occur only in smooth
substrata, such as flattened grass. As water penetrates the deeper layer, the friction with
the ground decreases, and the avalanche is triggered.

• Wet Snow Avalanches generally happen in the event of rain. The main characteristic of
wet snow avalanches is the presence of liquid water that wakens the snowpack.

• Powder-Snow Avalanches generally originate from slab avalanches. Their definition is
the same as mixed-type avalanches mentioned earlier and are detailed in the next section.

Figure 11 – Slab avalanches originate from the failure of the weak layer in the snow cover. (a) The fracture
line, also called the crown line, becomes evident after the release of a slab avalanche. (b) For
persistent snow covers, the height of the slab can reach many meters. (c) Dry-loose snow
avalanches start from a single point and entrain only the soft snow near the surface of the
snow cover. (d) However, wet-loose snow avalanches entrain heavier snow, becoming more
destructive.

(a)

Source: Vidic (2022).

(b)

Source: McGill (2023).

(c)

Source: Avalanche.org (2023).

(d)

Source: Avalanche.org (2023).
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2.2 Powder-Snow Avalanches

In literature, the Powder-Snow Avalanche (PSA) usually consists of two principal layers:
the Dense-Snow Layer (DSL) and the Powder-Snow Layer (PSL), representing the flow avalanche
and the powder avalanche, respectively. In addition, two extra layers are used to explain the
changes in mass observed in the DSL and PSL. The first layer, referred to here as the ground

layer, consists of the static snow cover encountered in the terrain. The second layer, referred to
as the transition layer (also called the saltation layer), appears above the DSL and below the
PSL and is responsible for the exchange of mass and momentum between the two layers. Table 2
lists the four mentioned layers and their main characteristics.

Table 2 – Layers of a powder-snow avalanche.

Layer Description FLow Type
PSL Suspension layer (fully turbulent) Turbulent particle laden flow

Transition Two-phase viscous wall layer Turbulent two-phase flow
DSL Flow avalanche layer Laminar flow

Ground Stagnant snow layer Snow at rest

During a PSA, the DSL may gain mass from the ground layer by snow entrainment
and lose mass from snow deposition processes. However, there are also exchanges between the
DSL and the PSL. As collisions fracture large chunks of snow, the surface of the DSL becomes
fluidized. The increasing wind causes particles to leave the dense layer surface in ballistic motion,
creating a transition region. Some particles make their way up to the PSL, called the suspension

layer, where collisions are less frequent and get into strong aerodynamic turbulence. Figure 12
depicts the anatomy of the avalanche described above.

Figure 12 – Powder-snow avalanches can be dissected into four main layers of different flow types. The
DSL is composed of big snow packs that break into smaller pieces as the flow develops.
Particles at the fluidized surface of the dense flow layer are stirred up, forming a transition
layer. Small particles may be suspended by turbulent air and form the PSL, which is self-
accelerated by gravity and turbulence. The DSL exchanges mass with the static snow cover
that forms the ground layer by entrainment and deposition processes.

Source: Elaborated by the author.
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The sequential events of a PSA happen along three distinct phases that roughly split the
avalanche path into three parts: the start zone, the track, and the runout zone. The start zone is
where the primary block of snow detaches from the mountain surface and starts to slide down the
incline (see the slab avalanche description in the previous section on page 50). The track is the
following section of the path where the flow develops as the avalanche accelerates and increases
in size by entraining snow from the ground. The amount of entrained snow will influence how
fast and long the flow will advance. In the final portion, the runout, the avalanche starts to slow
down until it stops and the snow is deposited. Avalanches will stop depending on many factors,
such as terrain topography and the decrease in entrainment.

The entrainment of snow plays a central role in the evolution of an avalanche flow,
particularly in a PSA. The entrainment processes8 feed the cloud and dictate the size of the
powder cloud. Issler (2014) describes four mechanisms of entrainment in snow avalanches:

• Plowing, or ploughing, in the front of the flow occurs as the dense core incurs into the
snow cover. The frontal impact pushes the snow cover forward. The amount of entrained
snow (displaced snow cover) depends on the depth of the snow cover, its strength, and the
speed of the avalanche.

• Depending on the strength of the snow cover, particularly in the presence of dry snow that
has low cohesion, the compression force of the arriving avalanche, right in the front of the
flow, creates a high pore pressure that forces the interstitial air out. The drag caused by the
airflow pushes the snow upwards as an eruption, creating the characteristical frontline
of PSAs. The process happens quickly, 0.1∼ 2 s, with significant entrainment rates up to
350 kg ·m−2 · s−1 (SOVILLA; BURLANDO; BARTELT, 2006)9.

• Between the bed and the dense core, there is a continuous scour of the ground layer due to
the friction of the passing flow. As erodible snow loses cohesion and strength, the chunks
of snow break into smaller pieces. The loose portions get trapped by the avalanche flow.
Sovilla, Burlando and Bartelt (2006) relates this process to basal erosion, which happens
away from the front and at low entrainment rates of 10 kg ·m−2 · s−1.

• The ripping of bed slabs occurs when the friction exceeds the shear strength of the
snow cover. The sudden failure of the snow cover projects an entire slab portion into the
avalanche core. Sovilla, Burlando and Bartelt (2006) describes a similar process called
step entrainment, characterized by the failure of a resistant top layer of the snow cover.
When the crust breaks, the flow suddenly entrains the weak layer underneath, producing
entrainment rates as large as in eruption.

8 The physical processes in entrainment processes still pose many open questions to scientists. Many
challenges in field measurements limit the comprehension of entrainment mechanisms. The entrained
mass results directly from the erosion process of the snow cover. The next chapter discusses some of
these challenges.

9 Sovilla and other authors also use plowing to encompass the eruption mechanism.
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The plowing and eruption mechanisms described above are responsible for the plume
formation in PSAs. The blow-out that occurs in the leading edge of the avalanche creates the
conditions for plume formation. Bartelt et al. (2013) observed that after an initial plume quickly
achieves 10 m of height, the growth pauses and resumes as the plume is no longer at the front
(20∼ 50 m behind). The air intake at the leading edge, which is velocity-dependent, expands the
volume of the cloud. As the ejected heavy particles fall, the entrained air is displaced upwards,
suspending the ice dust up to 100 m. This process creates vertical movement of the plumes, but
not horizontal. This vertical movement of the plumes agrees that the plumes travel many times
slower than the leading edge10. Figure 13 shows the several entrainment processes mentioned
earlier.

Figure 13 – The various entrainment processes present in a PSA. Away from the front, the continuous
friction forces in the ground surface cause scour, basal erosion, ripping, and step entrainment.
In the leading edge, snow can be plowed frontwards but can also be violently ejected into
the air by eruption. Plumes are born from the eruption and grow as heavy particles settle
down and displace air upwards. The intermittency region includes surges of rapid flows and
produces the oscillatory behavior of the PSA front.

Source: Elaborated by the author.

For decades, observations indicated an oscillatory behavior occurring in the front of
a PSA. The plume formation mentioned above is the direct consequence of this dynamics11.
Such oscillations manifest as short-time streaks in radar data signatures, representing surges
of velocities faster than the avalanche front. These flow structures happen in the intermittency

region depicted in Figure 13 and quickly decelerate once they arrive at the leading edge of
the avalanche. The dynamics of this intermittent flow regime are still poorly know (SOVILLA;
MCELWAINE; KHLER, 2018).

10 Bartelt et al. (2013) also observed plumes traveling at 4 m · s−1 while leading edges were traveling up
to 50 m · s−1.

11 Bartelt et al. (2013) observed plumes being created at approximately 0.4 Hz (plumes per second).
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2.3 Remarks
• PSAs are primarily born from slab avalanches. In a fully developed PSA, many flow

regimes come into play, which makes the mathematical modeling of PSAs particularly
challenging. The typical approach is to divide the PSA into two layers, the DSL and the
PSL, that communicate with each other through an intermediate layer, the transition layer.

• The DSL flow presents high densities of up to 400 kg ·m−3 and depths of up to 10 m. The
entrainment happens by scour and basal erosion at slow rates of 10 kg ·m−2 · s−1 but may
entrain more significant amounts quickly by ripping and step entrainment.

• The PSL flow presents low densities of around 5 kg ·m−3 but can reach heights of up to
100 m. Entrainment occurs primarily by the eruption process at the leading edge of the
avalanche at incredible rates of up to 350 kg ·m−2 · s−1.

• From the many entrainment processes, the eruption is the primary source of mass for the
PSL. Therefore, the dynamics at the front of a PSA need special attention when modeling
PSAs.

• Plumes do not travel downhill at the same speed as the front of the avalanche. The velocity
of the plumes can be as low as 4 m · s−1, with the leading edge traveling at 50 m · s−1.

• The front of a PSA presents an oscillatory behavior caused by the intermittent region just
behind. This oscillation directly influences the formation of the plumes, which pulse from
the front (e.g., 0.4 plumes per second).
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CHAPTER

3
RESEARCH ON SNOW AVALANCHES

Modeling and simulating avalanche phenomena have been the goal of many researchers
for decades. Research has focused mainly on avalanche prediction, hazard control, mitigation
measures, and dynamics. This chapter explores the chronological advances in snow avalanche
science, focusing on avalanche dynamics.

The chapter starts with an overview of the history of snow avalanche research throughout
the last century in section 3.1. A complete taxonomy covering the entire period would be too
extensive and beyond the purpose of this text. Consequently, the section follows the history of
the leading families of models and their ramifications.

Although practical research — read observation and experimentation — goes beyond the
focus of this text, measurement data plays a crucial role in numerical model validation. Field
observations and laboratory experiments form the basis for physical and mathematical models.
Therefore section 3.2 on page 60 briefly covers the history of field and laboratory research on
the different types of snow avalanches.

The following sections delve into the history of physical and mathematical models of
the two main types of snow avalanches, dense–snow and powder–snow avalanches, roughly
covering the last 150 years of avalanche research. section 3.3 on page 66 explores the history
of dense–snow avalanche models, and section 3.4 on page 87 treats the mixed–type models
that simulate the different avalanche flow layers simultaneously, characteristic of powder–snow
avalanches.

Lastly, section 3.6 on page 102 lists commercial and open-source software packages
for snow avalanche simulation. section 3.7 on page 104 presents avalanche-related methods
employed in Computer Graphics, which is the final goal of this project. The chapters close with
relevant remarks to the subsequent chapters in section 3.8 on page 105.
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3.1 General View

Since civilization spread into mountainous regions, avalanches soon became a permanent
threat to human life. In the mid-20th century, mountain communities experienced considerable
growth, raising the interest and urgency in avalanche research since then.

Although the first physical models appeared in the 1950s, much of their inspiration and
assumptions came decades earlier. Figure 14 draws a general timeline of the scientific study of
snow avalanches over the last century. The timeline depicts crucial branches of research and
ideas that led to the most recent methods described in the following sections.

The first scientific study of snow avalanches dates back to 1881, pioneered by the Swiss
scientist (forester) Johann Coaz (COAZ, 1881). However, only a half-century later, Seligman,
Seligman and Douglas (1936) called attention to the complex nature of the phenomenon, at-
tempting to list the multitude of physical and environmental factors that produce an avalanche.
Earlier in the 20th century, Mougin (1922) calculated avalanche velocity and run-out distance by
treating avalanches as sliding blocks, a solution that originated many avalanche models in use
today.

Inspired by Mougin, Voellmy (1955) made the first significant attempt to formulate
the dynamics of dense–snow avalanches by bringing basal friction relations to the depth-
integrated hydraulic model, introduced by Barré de Saint-Venant (VENANT, 1871). Since
then, Voellmy’s basal friction model has been used as the starting point for most subsequent
models (LACHAPELLE, 1977; ANCEY, 2016). In particular, the Voellmy-Salm (VS) model,
created in the 1960s, spanned decades of influence and received many extensions and applications
— being officially used by governments on avalanche hazard calculation programs (SALM, 2004).
In parallel, the Russian model, referred to as the MSU model (GRIGORIAN; OSTROUMOV,
2020), also occupied an important position of influence for decades, dictating not only Eastern
models but also having a significant impact on Western research.

The dense-snow avalanche research achieved its pivot point when granular flow models
surged in the 1980s with the Savage-Hutter (SH) model (SAVAGE; HUTTER, 1989). The
SH model brought features from VS and MSU models along with a continuum mechanics
perspective, allowing the simulation of a wide range of physical processes such as entrainment,
avalanche body deformation, and complex terrain flows. The SH model received great approval
and is one of today’s leading models for dense-snow avalanche simulations (RAUTER et al.,
2018). In recent years, the advance in computing resources allowed new numerical methods
to offer particle-based models the capacity to handle internal flow processes and large-scale
deformations on real-world terrains (GAUME et al., 2018; LI et al., 2021).

Models for the powder-snow cloud may follow different origins and approaches, such as
the gravity currents and plume theory (ELLISON; TURNER, 1959; BARTELT et al., 2013) —
see Figure 14. Attempts to model the family of gravity current phenomena are contemporary to
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Figure 14 – Snow avalanche research timeline. Mathematical studies on snow avalanche dynamics started
approximately 150 years ago and spawned many physical models. In 1922, Mougin treated
the avalanche as a single-sliding block. Over the years, the sliding block model integrated
laws from 1871’s Saint-Venant hydraulic equations and friction, thanks to Voellmy in 1955.
Voellmy’s sliding-block / hydraulic model received many extensions, and its friction models
are still used today. In the 1980s, the continuum mechanics approach surged in avalanche
modeling, and the analogy with granular flows produced one of the most prominent dense–
snow avalanche models, the SH model. Since then, the models can handle avalanches with
deformable body and flowing in complex terrains. Recently, particle-based models gained
space due to computational power. Powder-snow avalanche research took a different path
toward multi-phase models, concentrating on the mixture of air and ice caused by turbulence.

Source: Elaborated by the author.

dense avalanche studies (KARMAN, 1940; BENJAMIN, 1968). Like dense avalanche models,
scientists also favored the depth-averaged models (from shallow-water theory) of powder-snow
avalanches over the years. Plapp and Mitchell (1960) firstly modeled turbidity currents (siblings
of powder–snow avalanches) with depth-averaged equations. Decades later, Parker, Fukushima
and Pantin (1986) included equation terms for mass entrainment and turbulence. The improved
model was then used to simulate powder-snow avalanches by Fukushima and Parker (1990).
Recently, Ivanova et al. (2021) developed a shear shallow water model with turbulence applied
to powder-snow avalanche simulations.

Before delving into a detailed research timeline, it is worth listing some reviews (MEL-
LOR, 1968; MELLOR, 1978; HOPFINGER, 1983; HARBITZ, 1998; HARBITZ; ISSLER;
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KEYLOCK, 1998; ECKART MCELWAINE JIM, 2012; ANCEY, 2016) and books (BOZHIN-
SKIY; LOSEV; BARTELT, 1998; PUDASAINI; HUTTER, 2007; LOUCHET, 2021) published
over the years in the general topic of snow avalanches. Likewise, a review of Russian1 research
history on snow avalanches is covered in (EGLIT; YAKUBENKO; ZAYKO, 2020).

3.2 Field Observations and Experimental Data

Field observations and laboratory experiments are the primary sources of evidence for
understanding avalanche dynamics and allow researchers to design numerical models. Measure-
ments on real large-scale PSAs2 offer essential data for validating numerical models. Furthermore,
Nishimura, Barpi and Issler (2021) calls attention to what they call the underrated potential of

field observations by commenting “[...] the study of snow avalanches have been made in well
over a dozen countries for nearly a century, with pioneering works dating back as far as 150 years
[...] despite substantial progress — many fundamental questions of primary practical significance
still lack a well–founded and comprehensive answer”.

The knowledge about the various physical processes of snow avalanches extracted
from field data over the decades is carefully discussed by Issler et al. (2020). Reports on field
observations, such as Issler (2020) and Furdada et al. (2020), provide consistent conclusions
about the destructive force of snow avalanches and offer valuable estimates for mass, speed, and
run-out distances. For instance, data from several real avalanches helped Sovilla, Burlando and
Bartelt (2006) to model the complex impact of entrainment processes on run-out distances, and
Gauer (2014) to validate models dealing with front velocity.

Test sites play an essential role in the empirical study of snow avalanches. A test site is a
mountain area containing avalanche paths where scientists install measurement instruments; as
the famous Lautaret Pass test site in the French alps, actively in use since 1972 (THIBERT et

al., 2015). Over the past decades, scientists have used various equipment and methods to collect
data from snow avalanches on test sites (ECKART MCELWAINE JIM, 2012). Bardolini et al.

(2005) offers an extensive discussion and analysis of measurement techniques applied in several
test sites over Europe. Measurement techniques include photogrammetry (DREIER et al., 2016),
radars (VRIEND et al., 2013), and pylons equipped with instrumental devices containing several
types of sensors (SOVILLA; SCHAER; RAMMER, 2008); see Figure 15. Chart 1 lists typical
measurement techniques of relevant physical properties to snow avalanche models used in field
observations.

Vallet et al. (2004) used videogrammetry to measure a large powder–snow avalanche
triggered at the Swiss Vallée de la Sionne test site. The avalanche velocity achieved an impressive

1 For many decades, the work of researchers from the Soviet Union and Russia was not accessible to the
Occident due to translation issues and other reasons.

2 A large data base of more then 4000 avalanche data is provided online in the website <http://www.
data-avalanche.org/> (Trésorier, Marc, 2021).

http://www.data-avalanche.org/
http://www.data-avalanche.org/
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Chart 1 – A list of physical quantities required by snow avalanche models and their respective measure-
ment techniques / instrumental apparatus.

Property Measurement Source
Density capacitance sensors (DENT et al., 1998)
Volume videogrammetry and (DREIER et al., 2016)

photogrammetry
Velocity array radar systems (VRIEND et al., 2013)
Internal velocities optical sensors (DENT et al., 1998)
Shear and normal shear plates (DENT et al., 1998)
stresses
Mass entrainment radars (SOVILLA, 2004)
and deposition

speed of 55 m · s−1, with a cloud volume of more than 6× 106 m3 and 20 m of cloud height;
see Table 3. Such volume measurements supported earlier plume theories (ELLISON; TURNER,
1959) — described in section 3.4. Additionally, Turnbull and McElwaine (2007) provided
data supporting plume theories, showing that the front velocity is independent of slope angle
due to air entrainment. Bartelt et al. (2013) showed that plumes decelerate quickly, obtaining
measurements of 4 ∼ 16 m · s−1 — with almost stationary plumes at the tail — against front
velocities of 50 m · s−1. Plumes are created at a frequency of approximately 0.4 Hz, quickly
reaching 10 m of height and slowly growing up to 40 m, due to buoyancy flux, 20∼ 50 m behind
the front; see Figure 16 on page 63.

Table 3 – A list of real scale snow avalanche measurements.

Front Speed [m · s−1] Height [m] Source
55 20 (VALLET et al., 2004)
50 40 (BARTELT et al., 2013)

Data collected at the Vallée de la Sionne and Monte Pizzac test sites showed avalanches
growing 12 times due to snow entrainment and show that avalanches with the same speed run
different distances due to entrainment mechanisms (SOVILLA; BURLANDO; BARTELT, 2006).
Estimates of entrainment and deposition depth can be found in Sovilla et al. (2010). Sovilla
(2004) extensively discusses various field measurement techniques to model mass entrainment
and deposition processes with the following observations:

• On average, avalanches grow their mass by a factor of 4.6;

• The topography of the terrain has little influence on entrainment. Entrainment is also
independent of avalanche size;

• On average, avalanches entrain 67% of the release snow depth (fresh snow on the ground
at the moment of the release);
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Figure 15 – Instrumental pylons are placed in test site avalanche paths to collect data from avalanche flow.

(a) A 20 m pylon equipped with sensors able to measure
flow depth, impact pressure, cloud density and many
other quantities.

Source: Sovilla, Schaer and Rammer (2008).

(b) A similar pylon being hit by a large-scale
avalanche in the Vallée de la Sionne test site.

Source: Bartelt et al. (2016).

• The characteristics of snow directly influence entrainment. For example, high cohesion
due to wet snow limits entrainment, while low cohesion leads to higher entrainment.

• High bed friction increases snow deposition and difficult entrainment due to deceleration;

• During ploughing (frontal entrainment), the entrainment rate of low-density and cohesion-
less snow is up to 350 kg ·m−2 · s−1 and snow cover shear strength < 1 kPa;

• During basal erosion (internal entrainment), ice crust and high-strength snow are entrained
at a rate of 10 kg ·m−2 · s−1, and snow cover shear strength > 25 kPa.

Sovilla, McElwaine and Louge (2015) presented an anatomy model of the powder–snow
avalanche based on field and experimental data by discussing the various profiles of density and
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Figure 16 – Cross-section of plume heights and positions of an avalanche after 40 s, 45 s, and 50 s. The
avalanche moves at 50 m · s−1 and plumes rise 40 m above the mountain surface.

Source: Bartelt et al. (2013).

speed throughout the avalanche body. Later, Sovilla, McElwaine and Khler (2018) refined their
earlier anatomy model by considering an intermittency frontal region — a highly active ≈ 10 m

near front region presenting high densities of 20 kg ·m−3 and velocities 60% larger than front
speed. Based on radar data analysis, Köhler, McElwaine and Sovilla (2018) could distinguish
seven simultaneous flow regimes in a powder–snow avalanche. The authors concluded that
numerical models should handle at least 5 of those regimes. Refer to Gauer et al. (2008) for a
previous discussion on flow regimes within powder–snow avalanches.

Despite the invaluable data collected from field observations on test sites, real-scale
avalanche experiments are expensive, dangerous, unpredictable, and dependent on weather
conditions. Hence laboratory experiments play a critical role in avalanche research. Controlled
flow and reduced-scale experiments consist of similar flow mechanisms to real-scale avalanches.
Issler (2003) examines 60 years of experimental studies over snow avalanches, discussing the
similarity issues inherent to the reduced scale utilized in the laboratory.

Dimensionless numbers — refer to table 42.1 in Eckart McElwaine Jim (2012) — can be
used to quantify the similarity between small and real-scale flows. Some examples of dimension-
less numbers used in laboratory experiments in avalanche research are:

• Density ratio ∆ρ — the density difference between the two fluids (ex. air and snow):

∆ρ =
ρ1−ρ0

ρ0

where ρ0 is the density of the ambient fluid (air) and ρ1 is the density of the fluid in
suspension (snow);
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• Reynolds number Re — the ratio of inertial forces to viscous forces:

Re =
u f hρ1

µ

where u f is the front velocity, µ is the dynamic viscosity of the ambient fluid, and h is the
front head height;

• Richardson number Ri — the ratio of potential energy to kinetic energy at the interface
between fluids:

Ri =
g′hcosθ

u2
f

where g′ = g∆ρ , and θ is the slope angle;

• Densimetric Froude number Fr — the ratio of the viscous diffusion time to the convective
time scale:

Fr =
u2

f

g′h
.

Small-scale experiments can be validated by other similarity criteria as well. Faillettaz et

al. (2002) analyzed data from more than 5000 avalanches and confirmed that slab-avalanche size
distributions are scale-invariant, similar to other geophysical phenomena such as earthquakes
and landslides. For powder–snow avalanches, similarity is usually borrowed from small-scale
turbidity current (small ∆ρ ) tests performed in water tanks, although small-scale non-Boussinesq
(higher ∆ρ ) experiments can be found in Ancey (2004), Turnbull and McElwaine (2008), Dellino
et al. (2019), and Dai and Huang (2021).

In the case of laboratory experiments of powder–snow avalanches — emulated by small-
scale turbidity currents — diverse materials are often used in place of actual snow. Examples of
materials range from dry or fluidized granular materials (ROCHE et al., 2011), mixture solutions
of water (BEGHIN; OLAGNE, 1991) (see Figure 17a), and other sorts of materials such as
glass (GREVE; HUTTER, 1993) and quartz (KELLER, 1995). Linden and Simpson (1986)
used bubbling water to emulate ambient air turbulence and showed that the a gravity current
can be destroyed by the background turbulence. Later, Hermann and Hutter (1991), utilized
polystyrene powder and water to emulate turbulent suspension flows and achieved similarity
by the Froude number; see Figure 17b. Results showing Fr ≈ 1 explain why gravity currents
speed is independent of flow angle (SHIN; DALZIEL; LINDEN, 2004). In parallel, Turnbull and
McElwaine (2007) analyzed front position and volume data from test site avalanches and found
values for the Froude number of 2.2±0.18.

Outdoor experiments allow the use of actual snow material under natural ambient temper-
atures (STEINKOGLER et al., 2015). Ski jump hills have also been used to simulate intermediate-
scale avalanches, see (MCELWAINE; NISHIMURA, 2001) and (TSUNEMATSU; MAENO;
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Figure 17 – Different mixtures can be utilized in laboratory experiments to emulate powder–snow suspen-
sions.

(a) Dyed salt solution.

Source: Beghin and Olagne (1991).

(b) Polystyrene powder.

Source: Hermann and Hutter (1991).

NISHIMURA, 2020), where ping-pong balls serve as the granular material particles; see Fig-
ure 18.

Figure 18 – Outdoor experiment of granular flow utilizing 300000 ping-pong balls at the Miyanomori ski
jump hill in Hokkaido, Japan.

Source: Tsunematsu, Maeno and Nishimura (2020).

Internal velocities, density profiles, and stress quantities are particularly valuable to
understanding the internal processes of snow avalanches. For example, an increase of internal
velocity was detected by Nishimura et al. (1993) seconds after the passage of the front due
to the arrival of the dense flow. Naaim and Martinez (1995) measured vertical profiles of
particle concentration in the powder-clouds discharged in laboratory. However, due to the violent
nature of such phenomena, measuring these properties is very difficult. Snow frozen at the
sensors can damp signals, and physical vibrations during avalanche flow can introduce noise into
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measurement data and create many other issues (KERN et al., 2009). Only a few measurements
were partially successful, such as in Dent et al. (1998).

Small-scale experiments, such as Savage and Sayed (1984) and Tiefenbacher and Kern
(2004), allow the investigation of the internal flow in avalanche-like phenomena. However,
the study of mass entrainment — decisive to the dynamics of powder–snow avalanche internal
processes — is a complicated problem to solve in small-scale experiments. To the author’s knowl-
edge, no significant advances in mass entrainment experiments for powder–snow avalanches
have been achieved — even in laboratories.

Despite the difficulty of performing measurements, research on entrainment and deposi-
tion in dense-snow avalanches has seen advances in field observations and laboratory experiments
(BARBOLINI et al., 2005; FARIN; MANGENEY; ROCHE, 2014; EDWARDS et al., 2021).
Entrainment by bed erosion directly influences avalanche motion by restricting or enhancing
its mass and velocity (BARBOLINI et al., 2005). Entrainment has been associated with greater
runout distances (STEINKOGLER; SOVILLA; LEHNING, 2014). Observations indicate that
entrainment (basal erosion) occurs mainly in the front, while deposition happens in the tail
(Sovilla; Bartelt, 2002). Gauer and Issler (2004) discusses the different mechanisms of erosion in
snow avalanches. Issler et al. (2008) observed the dominance of such mechanisms for different
types of flow regimes of wet and dry snow avalanches. Issler and Jóhannesson (2011) and
Issler (2014) offer a theoretical discussion about such mechanisms on various types of flows,
including field observations and mathematical models presenting peaks of influx rates of up to
1000 kg ·m−2 · s−1. Issler et al. (2020) suggests that the eroded mass is only entrained into the
avalanche.

3.3 Dense-Snow Avalanche Models

Despite the different physical properties of snow, dense snow avalanches have many
similarities with other avalanches, such as debris flows and mudslides. Many mathematical
models of such avalanche types share similar origins. Compared to the powder–snow avalanches,
dense-snow avalanche research appears to be more extensive and explored.

Figure 19 arranges popular models of dense-snow avalanche models roughly based on the
SAME (Snow Avalanche Modeling and Warning in Europe) model survey (HARBITZ; ISSLER;
KEYLOCK, 1998). This text focus only on a subset of models to avoid overextending the scope
of this section, concentrating on the deterministic type between the two main divisions, statistical
and deterministic, as statistical models offer little detail about the internal flow dynamics of such
avalanches. This section explores the dense-snow avalanche models in the same order of the
following division:

• Empirical / Statistical models — described in subsection 3.3.1 on page 68 — apply statis-
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Figure 19 – General organization of dense-snow avalanche models.

Source: Adapted from Harbitz, Issler and Keylock (1998).

tical inference methods on historical data of field observations and laboratory experiments
to predict general quantities of the avalanche such as runout distances and avalanche size;

• Deterministic models — described in subsection 3.3.2 on page 69 — encompass all the
following. Such models use mathematical equations to describe motion at different scales;

• Sliding Block models — described in subsection 3.3.3 on page 71 — represent the
avalanche body as a single rigid (non-deformable) block that slides down over an in-
clined plane;

• Hydraulic models — described in subsection 3.3.4 on page 72 — borrow laws and relations
from hydrodynamics to better reproduce the mechanical behavior of snow in sliding block
models;

• Kinetic models — described in subsection 3.3.5 on page 76 — use balance equations from
continuum mechanics to full describe the avalanche;

• Granular Flow models — described on page 79 — like kinetic models, stand from the
continuum point of view but bring relations from the laws of motion of granular materials.
Such models consider internal friction processes and other complex internal phenomena
of snow avalanches, such as entrainment and deposition.

Before continuing, it is worth noticing that the above division of models is neither
definitive nor inflexible since there are models that share origins and aspects of different groups
simultaneously. For example, some methods combine statistical and deterministic models, while
some granular flow and kinetic models borrow terms from hydraulic models. In other words,
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such a division of models is not necessarily a set of disjoint groups of methods, concepts, or
assumptions.

3.3.1 Statistical Models

As mentioned in section 3.2, field observations and historical data provide essential
resources for understanding physical phenomena. Such data is the primary input of statistical
models. Statistical models use historical information to predict the size of new avalanches
by establishing correlations between the run-out distances and the underlying topographic
parameters, such as the avalanche initiation point, stopping point, and slope angles representing
the avalanche track path (MCCLUNG; LIED, 1987). Based on such parameters, the α − β

model by Lied and Bakkehøi (1980) uses regression methods to estimate the run distance of
an avalanche over a given terrain topography; see Figure 20 on page 68. Other examples of
statistical models are the run-out ratio model by McClung, Mears and Schaerer (1989), and the
space-time (ST) model by McClung (2000). Refer to Sinickas (2013) and Schweizer, Bartelt and
van Herwijnen (2021) for further references and details about statistical models.

Figure 20 – Parameters used by the α−β model. The model uses the (A) starting zone location, the (B)
deceleration zone location, the (C) run-out zone location, and the average inclination angle
β . Along with regression constants γ and λ , the stopping angle α can be determined as
α = γβ +λ .

Source: Elaborated by the author.

Statistical methods have been extensively used in avalanche zoning or even in com-
bination with deterministic methods for estimating the run-out distance of long-return period
avalanches (ANCEY; GERVASONI; MEUNIER, 2004). However, such methods present several
shortcomings related to issues of input data quality and the wrong assumption that avalanches’
dynamic behavior is governed by topographic features (MEUNIER; ANCEY, 2004). Such
limitations require the use of deterministic approaches.



3.3. Dense-Snow Avalanche Models 69

3.3.2 Deterministic Models

Under the deterministic approach, physical and mathematical equations describe the
avalanche motion. Different methods deal with different scales of representation of mass; see
Figure 21 on page 69. These scales range from individual snow particles (Figure 21c) to
a single sliding block representing the entire avalanche body (Figure 21a), with intermediate
representations that split the avalanche body into moving columns of variable height (Figure 21b).
Larger scale representations lead to simpler models and crude estimations, while more miniature
scale representations offer precise flows at the cost of complicated models and computational
effort.

Figure 21 – Deterministic models describe the avalanche — body in different scales of representation.
Model accuracy depends on the level of representation, with more refined representations
leading to higher precision on flow dynamics.

(a) A single solid block represents the avalanche body.
Equations describe the movement of the center of
mass, and velocity is assumed uniform throughout
the block — friction forces with the inclined surface
decelerate the slide.

(b) Separate columns of mass represent the avalanche
body. Each column block has its center of mass
and friction with the bottom surface. The height
of columns varies as mass is transported between
columns.

(c) Small individual blocks, called particles, describe fi-
nite volumes of the avalanche. The particles have in-
dividual properties, such as velocity and mass, and
collide with each other. The collisions produce fric-
tion forces, and particles’ collective movement shapes
the flow.

Source: Elaborated by the author.

The mathematical equations used by deterministic models may use different coordinate
spaces to describe the physical quantities and the motion of avalanches. Figure 22 on page 70
depicts the two standard coordinate systems used by avalanche models: the local and global
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coordinate systems. In global coordinates, the axes of the basis are aligned to the Cartesian
basis and do not depend on the geometry of the domain; see Figure 22a. In local coordinates,
axes vary along the geometry, and usually, the basis vectors are the bed’s normal and tangential
directions; see Figure 22b. Vector quantities such as the velocity and acceleration forces, in
particular, are sensitive to coordinate systems and must be appropriately defined. For example,
in a position in the bed surface with slope angle θ , the gravitational force g translates to the
following projections in a local coordinate system: the tangential component along the slope,
gsinθ 3, and the component gcosθ along the slope normal; see Figure 22c.

Figure 22 – Models can use different coordinate systems to describe flow quantities. In the case of
local coordinate systems, vector quantities must be projected onto the local basis system to
guarantee consistency in equations.

(a) The global coordinates system usually uses the
Cartesian coordinate system. The system does not
depend on the geometry of the terrain, as all quanti-
ties follow a single coordinate system.

(b) Local coordinates follow the geometry of the do-
main. Each position in space spawns an aligned
basis on which vectors must be projected. Such
an approach can bring many simplifications to the
equations.

(c) Gravity acceleration vector projection onto a local
coordinate system.

Source: Elaborated by the author.

All avalanche model equations in this section use the same local coordinates system —
except for kinetic models, which use the global coordinate system. In the one-dimensional case,

3 The projected gravitational force is common in models of flows over inclined terrains — once such
models usually use local coordinates along the slope.



3.3. Dense-Snow Avalanche Models 71

the horizontal direction x′4 in the local coordinate system is tangential to the slope. Therefore,
spatial derivatives along the horizontal5 direction are defined by ∂/∂x′. The dynamic variables
can be functions of the time t and the position along the slope x′. For instance, the height h′(x′, t)

of the avalanche body, measured in meters, is the height along the slope’s normal direction. The
velocity vector u(x′, t) points to the motion direction (parallel to x′). For curved slopes, the angle
of the slope θ(x′) is a function of the position; see Figure 23 on page 71.

Figure 23 – Common variables present in avalanche models. The height h and velocity u are functions of
position x and time t. The bed slope θ varies only with position. Some models also consider
the entrainable snow cover, which has depth h0.

Source: Adapted from Eglit, Yakubenko and Zayko (2020).

3.3.3 Sliding Block Models

The simplest and earliest approach is the so–called sliding block model, introduced by
Mougin (1922), and describes the avalanche as a single rigid (non-deformable) body that slides
over an inclined plane representing the mountain terrain (see Figure 21a on page 69). In 1924,
such early approaches were used to compute the velocity of avalanches during the Olympic
Games at Chamonix (LAGOTALA, 1927). Sliding block models make the calculations relative
to the center of mass of the sliding block and use specific friction forces to emulate the avalanche
mechanical behavior. Typically, only one-dimensional schemes are considered and motion is
described as:

du
dt

= gsinθ −F, (3.1)

where u(x, t) is the velocity, θ is the mean slope of the inclined plane, g is the gravitational
acceleration, and F(x, t) is the frictional force. The mechanical behavior of the avalanche due
to its interaction with the mountain soil relies on the frictional force term F , responsible for
the deceleration of the flow. The most significant development in the friction term came with
4 The prime superscript, ⋆′, refers to local coordinates. However, for the sake of generality, the prime

may be omitted throughout the text.
5 Although the term horizontal refers to the aligned direction of left and right, as in the Cartesian

coordinate system, in the context of inclined flows, the term also refers to the principal flow direction.
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Voellmy (1955)’s friction model — called Voellmy fluid by Hungr (1995). Voellmy’s model
combines a dynamic friction component τh with a Coulomb-like dry friction (POPOVA; POPOV,
2015) component τd:

Fv = τb = τh + τd, τh = g
u2

ξ h
, τd = µgcosθ , (3.2)

where ξ is the coefficient of dynamic friction related to the terrain roughness, µ is the friction
coefficient related to the snow fluidity, and h(x, t) is the mean flow depth of the avalanche.
The letter b in τb stands for bed, as Voellmy’s model Fv represents the bed shear stress. The
term τh, named by Voellmy as turbulent friction and sometimes referred to as shear resistance

(BARTELT; SALM; GRUBER, 1999) or hydraulic friction (EGLIT; YAKUBENKO; ZAYKO,
2020), is based on the Chézy resistance formula for turbulent water flow in open channels and
refers to the viscous resistance — see page 170 in Kay (2017). The Voellmy’s friction model is
used by many generations of models today, such as debris flow models (PIRULLI; SORBINO,
2008; HUSSIN et al., 2012; SCHRAML et al., 2015; ABRAHAM et al., 2022).

Sliding block models overcome many statistical model shortcomings but still offer few
details about the flow dynamics. These models inherently consider the body of the avalanche as
non-deformable. In order to account for more complex phenomena such as mass entrainment,
straining, and other physical properties of an avalanche flow, avalanche models need to dive
further into smaller-scale representations.

3.3.4 Hydraulic Models

The contributions of Voellmy6 go beyond the frictional model. His analogies to hy-
drodynamics also brought attention to the so–called depth-integrated flow model, which has
become the most prominent model for dense-snow avalanches since then (LACHAPELLE,
1977; ANCEY, 2016). The depth-integrated flow model, also called shallow water equations
(SWE), is based on the works of Barré de Saint-Venant on hydraulic modeling (VENANT,
1871). Depth-integration simplifies fluid mechanics equations by neglecting vertical velocities,
assuming that the flow height h is much smaller than the flow length l. The horizontal velocity
at any given point is averaged over the whole depth of the flow, yielding ū(x, t). In terms of
scales of representation of the avalanche body, the depth-integrated flow is an intermediate scale
that sees the fluid body as columns of mass that vary in height; see Figure 21b on page 69. The
one-dimensional Saint-Venant’s equations (SWE) are:

∂h
∂ t

+
∂

∂x
(ūh) = 0, (3.3)

∂hū
∂ t

+
∂ (hū2)

∂x
=− ∂

∂x
(
1
2

gh2), (3.4)

6 The works of Voellmy can be found in volume 73 of the series Schweizerische Bauzeitung at <https:
//www.e-periodica.ch/digbib/volumes?UID=sbz-002> (ETH, Zürich, 2022), by Wanger (2018).

https://www.e-periodica.ch/digbib/volumes?UID=sbz-002
https://www.e-periodica.ch/digbib/volumes?UID=sbz-002
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where again x is the slope coordinate axis and g is the gravitational acceleration.

Notice that the hydrostatic pressure gradient dictates the flow on the right-hand side of
Equation 3.4 but does not consider any friction forces. Models based on the SWE are called
hydraulic models and can be referred to by some authors as Saint-Venant models — models
using Voellmy’s friction may receive this name as well. Although Voellmy popularized the
depth-integration approach by using depth-averaged velocities and suggesting the use of the
hydraulic model, his model lacks Equation 3.3, the continuity equation. Therefore, Voellmy
assumes depth and depth-averaged velocity to be the same at all points of the avalanche, which
essentially makes his model a sliding block model.

Many works extended Voellmy’s model throughout the years in order to complete his
equations. Particularly, the set of works made by Salm — Salm (1966), Salm (1967), Salm
(1972) — are considered the most significant extensions and form the Voellmy-Salm (VS) model,
with Salm and Gubler (1985) and Salm, Burkard and Gubler (1990) being referred to as the
Voellmy-Salm-Gubler (VSG) model. A comparison between the VS and VSG variations can
be found in Gubler (1989). The extensions incorporated by the VS model handle non-uniform
flows and internal friction under the assumption that snow behaves like ideal elastoplastic
cohesionless materials (like dry sand) (HEIMGARTNER, 1977), with different values for the
friction coefficients of Fv. Following the earth-pressure definition of Rankine (1857), the VS
model also adapted the hydrostatic pressure to depend on the internal friction angle φ replacing
the momentum Equation 3.4 by

∂u
∂ t

+u
∂u
∂x

= gsinθ −Fv−
∂

∂x
(λ±gcosθ

h2

2
), (3.5)

where the term λ± = tan2(45o±φ/2) is the active/passive7 pressure coefficient with internal
friction angle φ and the operation ± depends on the value of ∂u/∂x (+ for ∂u/∂x > 0, and
− otherwise) (SALM, 2004). The WSL Institute of Snow and Avalanche Research SLF (SLF)
(SLF, 2022) has used the VS model since earlier 1990s (SALM, 1993). Table 4 and Table 5
list the values for the coefficients of dynamic friction ξ and dry friction µ suggested by the
institute (GUBLER, 2005). Software packages cited in section 3.6 use the VS model. Examples
of methods based on the VS model are Sovilla and Bartelt (2002) and Christen, Kowalski and
Bartelt (2010).

Table 4 – Typical values in the VS model of the dynamic friction ξ for different dense-snow avalanche
conditions suggested by the SLF (GUBLER, 2005).

Dynamic friction (ξ ) Condition
> 1000 very cold dry snow, very low bed roughness
500∼ 600 large bed roughness, channelled flow
400 avalanche flowing though a forest

7 According to Salm, internal friction (plugged into the pressure term in the VS model) arises as the
snow gets under a tensile (active) or compressive (passive) longitudinal strain.
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Table 5 – Typical values in the VS model of the dry friction µ for different dense-snow avalanche
conditions suggested by the SLF (GUBLER, 2005).

Dry friction (µ) Condition
0.155 extreme avalanches with large volumes,

flow depth of 1∼ 2 m
0.25∼ 0.3 smaller avalanches with volumes < 104 m3

0.3 wet snow avalanches of any size

Despite its success, the VS model has received many criticisms. Critics of the VS model
point out several shortcomings and limitations regarding the accuracy of its predictions on
runout distances and deposition heights (MCCLUNG; MEARS, 1995). Indeed, the VS model
is considered by many as a sliding block model since its original formulation does not include
the continuity equation (BARTELT; BUSER; PLATZER, 2006; PUDASAINI; HUTTER, 2007).
Perla, Cheng and McClung (1980) derived the PCM model, which uses a calibrated mass-to-drag
ratio M/D coefficient applied to the velocity squared, replacing the dynamic friction coefficient
ξ - so only the dry friction coefficient µ must be estimated. An early extension of the PCM, the
PLK model by Perla, Lied and Kristensen (1984), uses particles to handle snow entrainment and
deposition. The PCM model offers better runout distances in complex terrains than the VS model
(LIED et al., 1995; JAMIESON; MARGRETH; JONES, 2008). Bartelt, Salm and Gruber (1999)
solved some shortcomings of the VS model by combining characteristics from the Norwegian
NIS model, by Norem, Irgens and Schieldrop (1989), and modifications to Voellmy’s friction
from Russian models — described on page 74.

The critical characteristic of the NIS model that puts it one step forward from sliding
block models is that it considers the avalanche body as completely fluidized. The VS model, for
example, alternates between three flow regimes: sliding8, partly fluidized, and fully fluidized.
Salm and Gubler (1985) adapted these flow regimes from the studies of Haff (1983) on treating
the movement of granular materials from a continuum point of view. The flow regime determines
the velocity profile along the depth; see Figure 24 on page 75. Non-steady and non-constant
velocity profiles result from internal stresses in the avalanche body, which the previous models
do not adequately handle. Allowing such velocity profiles — as in the NIS model — leads to
more precise simulation results.

In parallel to western models, Russian models also have a long history. The first sliding
block models in the Soviet Union appeared in the early 1930s following the same Equation 3.1
on page 71 (BOZHINSKIY; LOSEV; BARTELT, 1998). Similar to the VS model, the works
of Grigorian and Eglit — Grigorian, Eglit and Iakimov (1967), Bakhvalov and Églit (1973),
Grigorian and Ostroumov (1977), Eglit (1998b) — constitute the Moscow State University
(MSU) hydraulic model. The one-dimensional MSU momentum equation is quite similar to VS

8 The sliding regime, when velocity is constant accross the depth, is also called plug flow (LIGNEAU;
SOVILLA; GAUME, 2022).
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Figure 24 – Velocity profile on different flow regimes.

(a) In the sliding regime, velocity (1∼ 5 m · s−1) is con-
stant across the depth and is usually characterized
by high cohesive snow.

(b) As velocity increases, snow is disintegrated into
clods and a partial layer becomes fluidized. The
shear stress depends linearly on flow velocity.

(c) At higher speeds, snow clods mobility allow changes
in flow depth and deformations. The shear stress now
depends on the square of the flow velocity.

Source: Adapted from Salm and Gubler (1985).

model’s Equation 3.5 on page 73:

∂u
∂ t

+u
∂u
∂x

= gsinθ −Fv−
1

2h
∂

∂x
(h2gcosθ), (3.6)

where Fv uses a modified dry friction τ ′d . The full MSU model includes the continuity Equation 3.3
on page 72 and a set of hydraulic equations to handle snow entrainment in the leading edge.
Entrainment equations are treated in the subsection 3.3.7 on page 83.

From Equation 3.6, two main differences to the VS model stand out. Firstly, the MSU
model discards the active/passive pressure coefficient by setting λ± = 1. The second relies on the
term Fv. Grigorian stated there should exist an upper limit to friction, arguing that friction cannot
rise indefinitely with an increase in normal stress (GRIGORYAN, 1979). Therefore, the MSU
model limits the dry friction τd = µgcosθ by the shear stress τγ = µ p with a yield condition
τγ∗ representing the minimal shear strength of the snow in the avalanche:

τ
′
d =

τd, h≤ h∗
τγ∗
h , h > h∗

, h∗ =
τγ∗

µρgcosθ
. (3.7)

In other words, the dry friction reaches a maximum value as avalanche depth h rises. In practice,
larger avalanches will travel longer distances in simulations, for which Voellmy’s friction model
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fails to produce satisfactory results (BARTELT; SALM; GRUBER, 1999). A post-mortem
paper by Grigorian was recently published with the state-of-the-art version of the MSU model,
discussing updates in the friction coefficients and the handling of entrainment (GRIGORIAN;
OSTROUMOV, 2020). The MSU model found its way to the west due to its snow entrainment
equations with Sovilla (2004). An extensive literature in English of Russian models can be found
in Bozhinskiy, Losev and Bartelt (1998) and a modern review in Eglit, Yakubenko and Zayko
(2020).

Hydraulic models have been present in avalanche-like phenomena research for many
decades now. Due to its simplicity and convenient analogy to hydrodynamics, hydraulic models
could quickly gain space in avalanche research during the 1970s. However, the complexities of
the mechanical behavior of snow during avalanche motion and the intricate relations of internal
friction forces demanded new research paths and new types of models.

3.3.5 Kinetic Models

The fluid-like motion of dense-snow avalanches makes using fluid mechanics equations
attractive. However, formulating a full fluid mechanics model still encounters several challenges
and limitations. Most difficulties come from the inherent complexity of the dynamics of snow:

• Snow particles change in size with time and position, spanning a wide range of sizes
(0.001∼ 1 m) (BARTELT; MCARDELL, 2009);

• Phenomena like erodible basal surface pose ill-known boundary conditions;

• Surge front and free surface instabilities lead to flows with abrupt changes over time;

• Dense snow flows are non-Newtonian viscoplastic flows (DENT; LANG, 1982);

• Variations in snow microstructure due to thermodynamic transformations make snow
rheometry very difficult, consequently impeding the identification of constitutive relations.

Therefore, the usual fluid mechanics approach is to treat the snow material as a whole
at the macroscopic scale — but far from a single piece as in sliding block models. The snow
avalanche body is usually represented by a set of particles or fine numerical grids that represent
small volumes of snow, as in Figure 21c on page 69. In such treatment, the bulk rheological9

properties of snow are used instead of directly dealing with real snow particles individually at the
microscopic scale. Such formulations from continuum mechanics, called kinetic models, combine
the rheological conditions with mass, momentum, and energy balance equations (PUDASAINI;

9 E.C. Bingham and M. Reiner defined the term rheology in 1929 to refer to "the science devoted to the
study of the deformation and flow of matter" (BINGHAM, 1944).
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HUTTER, 2007). For instance, an example of a local momentum balance equation for a bulk
material is:

ρ
du
dt

= ρg−∇p+∇ ·Σ, (3.8)

where ρ is the bulk density, u is the bulk velocity, g is the gravity acceleration, p is the pressure,
and Σ a second-order tensor called the bulk extra stress tensor10. In particular, the stress tensor
determines the relation between stress and the different physical states or acting forces that
characterize the behavior of different materials. In terms of stress-generating mechanisms during
snow avalanches, Hutter (1996) gives some examples:

• The rolling of snow particles over each other, known as the dry Coulomb rubbing friction,
that causes plastic behavior;

• The continuous and instantaneous collision of snow particles, without rubbing, transports
momentum and causes viscous behavior;

where the influence of each varies on the type of the avalanche and may occur simultaneously
along with other mechanisms. In dense snow avalanches for example, the dry Coulomb rubbing
friction is more present. Such stress response mechanisms are represented by the material’s
constitutive relations, defined by the so–called constitutive equations, or rheological models in
the present context, which describe the tensor Σ11 components σi j in Equation 3.8 on page 77
(GONZALEZ; STUART, 2008).

The study of the relationship between stress and deformation rates traces back to the
beginning of the 19th century (YU, 2002). Since then, scientists have been measuring constitutive
relations for many types of materials and physical phenomena, such as debris flows (MAJOR;
PIERSON, 1992) and mudflows (HUANG; AODE, 2009). Different properties of a material
can also lead to different stress-strain responses, as demonstrated by Arenson, Springman and
Sego (2007) for different types of frozen soil; see Figure 25a on page 78. The behavior of
materials can also change depending on their stress state. For example, a material with elastic
behavior can transit to plastic behavior when suffering too much of a certain type of stress. Such
transitions are represented by the so–called yield surfaces, which define the different regions in
principal stress space that represent the different material behaviors. The principal stress space is
a three–dimensional spaced formed by the three princial stresses (σ1,σ2,σ3), eigenvalues of Σ,
on which yield surfaces determine for which stress conditions, yield conditions or yield stress

criteria, the material will undergo plastic deformation. Figure 25b on page 78 shows an example
of a yield surface, the Mohr–Coulomb yield failure criterion that spans a six-side pyramidal

10 The pressure p and extra tensor Σ are decomposed parts of the so–called Cauchy stress tensor S =
−pI +Σ, where Σ is the deviatoric stress tensor and −pI is the spherical stress tensor (GONZALEZ;
STUART, 2008).

11 The equations system does not has enough equations to solve all the 9 variables introduced by Σ. The
consitutive equations complete the system and are usually referred to as closure model.
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surface, for which the material undergoes plastic deformation when stresses reach any of the
sides/edges (see (LABUZ JOSEPH F.AND ZANG, 2012)).

Figure 25 – Constitutive relations describe stress responses to acting forces and material deformations,
such as strain. Yield surfaces define stress states of materials and yield critera characterize
material behavior.

(a) The stress-strain responses for ice and frozen soil.
The four curves, A, B, C, and D, represent the duc-
tile, dilatant, brittle, and brittle failure behaviors,
respectively.

Source: Arenson, Colgan and Marshall (2015).

(b) A cross-section of the Mohr–Coulomb yield surface
for an isotropic material. The surface is pyramidal
with an irregular hexagonal base defined in the prin-
cipal stress space (σ1, σ2, σ3). The edges represent
the cross-section of the surface on the π–plane —
perpendicular to line σ1 = σ2 = σ3.

Source: Labuz Joseph F.and Zang (2012).

Examples of common constitutive equations and yield surfaces found in the literature are
the Coulomb-like friction laws (IVERSON; DENLINGER, 2001), the Drucker-Prager elastoplas-
tic model (DRUCKER; PRAGER, 1952), the Mohr-Coulomb-Cap criterion for snowpack failure
(REIWEGER; GAUME; SCHWEIZER, 2015), and the nonlinear viscous law µ(I)-rheology
(GRAY; EDWARDS, 2014). The Voellmy’s friction law described earlier is an example of
constitutive equation used by kinetic models. Ligneau, Sovilla and Gaume (2022) discusses the
role of friction in dense snow avalanches, and Voellmy’s friction coefficients are explored in
Ancey and Meunier (2004), Naaim et al. (2013), Sanz-Ramos et al. (2020).

Laboratory experiments and measurements from field observations of rheological proper-
ties help design constitutive relations of materials. However, the measurement of constitutive
relations is more complicated or sometimes impossible for more complex materials like snow
(ANCEY; MEUNIER, 2004). In such cases, the models borrow characteristics from other physi-
cal phenomena, such as granular and viscoplastic flows (TAI; HUTTER; GRAY, 2001; ANCEY,
2001; NICOT, 2004). Examples of rheological models used in snow applications are the Burgers
model for viscoelastic materials (MELLOR, 1974), models for elastoplastic materials (SINGH
et al., 2022; GAUME et al., 2019), models based on the micro-structural configuration of snow
(St. Lawrence; LANG, 1981; MAHAJAN; BROWN, 1993), and models considering the com-
pressibility of snow (MISHRA; MAHAJAN, 2004). Refer to Salm (1982) for more details on
the earlier approaches of constitutive models for snow.
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3.3.5.1 Granular Flow Models

One of the most successful approaches used by kinetic models of dense-snow avalanches
is the treatment of snow as a granular material. Although the first experiments with the motion
of granular materials started in 1954 with the pioneering work of Bagnold (1954), theoretical
models started to appear only decades later (HAFF, 1983). Refer to Savage (1984) for a review
of early models of granular flows. Complete reviews on granular flow models can be found in
Campbell (1990), Hutter and Rajagopal (1994). Such models take the behavior of the granular
material from a continuum point of view, which allows the use of continuum mechanics equations.
Haff (1983) uses the following assumptions regarding the material grains and their analogy to
fluid molecules in the continuum treatment:

• Individual grain motion follows the laws of classical mechanics;

• Different from molecules that may undergo completely elastic collisions, grain-grain
collisions always involve a loss of kinetic energy (the amount of energy lost in such
granular systems is significantly different from fluids);

• Although different grains have different sizes, minor differences between grain sizes do
not affect the motion significantly. Therefore, such granular systems assume all particles
are roughly the same size;

• Similar to the same size assumption, all grains are assumed to be roughly the same shape
(spheres). Otherwise, grain-grain collisions must account for grain rotation due to torque
caused by friction;

• Grains are orders of magnitude bigger than molecules, so the number density of particles
in a granular flow is much smaller than the number density of molecules in a correspon-
dent fluid. Combined with the inelastic nature of grain-grain collisions, the continuum
hypothesis might not hold in some instances12. Thus, the model must be applied only to
granular flow situations where the continuum hypothesis is valid;

• The binary collision hypothesis can be assumed for such granular systems, meaning that
only pairwise collisions are essential for the dynamical evolution of motion;

• Unlike molecular interactions, grain-grain interactions are assumed not to have any attrac-
tion force.

The last assumption above considers only cohesionless granular materials. Aside from
dry snow avalanches, dense-snow avalanches present strong, cohesive interactions. However,

12 The continuum hypothesis considers that properties, such as velocity, density, and energy, vary
continuously, even over small volumes, due to the small molecular scale. In comparison, the large-scale
size of grains will lead to abrupt changes in such properties for the same small volumes.
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cohesionless models for snow avalanches are widespread due to the difficulties inherent to
cohesion modeling. Examples of models using cohesion can be found in Bartelt et al. (2015) and
Valero et al. (2018).

The Savage–Hutter (SH) model is the first, perhaps the most famous, granular flow model
for dense-snow avalanches under the continuum mechanical approach. Introduced in 1989 by S.
B. Savage and K. Hutter (SAVAGE; HUTTER, 1989), the SH model considers some additional
simplifying assumptions to the list above:

• The flow is density preserving, meaning that volume expansions and compactions do not
happen during motion. Volume changes happen in the initiation and stop phases. Hutter
and Koch (1991) reported measurements of up to 20% volume changes in sand-avalanche
flows;

• The inclination slope angle θ is constant - this limitation was soon overcome by Savage
and Hutter (1991), allowing mildly curved topographies;

• The avalanche body is shallow in that the height is orders of magnitude smaller than the
longitudinal extensions of the body (similar to Saint-Venant’s);

• The velocity is depth-averaged through the avalanche depth (also similar to the depth-
integrated flow model);

• The friction is Coulomb-like dry friction with a bed friction angle δ ;

• The Mohr-Coulomb yield criterion defines the constitutive behavior with internal angle of
friction φ ≥ δ .

According to Hutter, Savage and Nohguchi (1989), which results and physical model
helped construct the SH model; the avalanche surface is assumed to be stress-free. The shearing
takes place in a thin layer close to the bed, where the basal shear stress causes the sliding of the
upper mass — here, the velocity profile is similar to the fluidized flow regimes in Figure 24b and
Figure 24c on page 75. This way, the material behavior only needs to be known at the bottom.

Figure 26 on page 81 describes the set of stresses acting in a finite volume element of the
avalanche close to the bed surface and their relations. The volume suffers pressure forces from
all sides and develops shear tensions internally and externally. The normal stresses represent
pressure forces due to the overburden weight of the snow above and along the path. The shear
stresses come from the shear traction exerted on the sliding surfaces. Considering the local
coordinate system — where x points in the slope direction, z points in the bed surface’s normal
direction, and y in the traverse direction — the SH model assumes that traverse sharing is
negligible13, so only shearing at the xz plane is considered ; see Figure 26a. Therefore the
important stresses are the normal stresses, pzz and pxx, and the shear stresses τxz.
13 Such assumption implies that pyy is a principal stress.
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Figure 26 – These figures show the normal and shear stresses acting in the thin basal layer of the avalanche,
as assumed by the SH model. The Mohr–circle diagram relates the stress states with the acting
stresses through the bed friction angle and the internal angle of friction.

(a) A volume element located at the base of the
avalanche is depicted in local coordinates — x in
the velocity direction and z perpendicular to the bed.
The principal stresses lie in the xy plane, as traverse
shearing is small and omitted. pyy and pxx are nor-
mal stresses and work as pressure forces due to the
snow weight, and τxz are the shear stresses due to
shear traction caused by sliding.

Source: Hutter, Wang and Pudasaini (2005).

(b) The figure shows a representation of the active/pas-
sive stress states. The dashed Mohr circle is the
active state, while the other is the passive state. The
internal friction angle φ bounds both circles, and
the bed friction angle δ determines the transition
points (pzz,±τxz) between states and, therefore, all
other points.

Source: Christian Kröner (2014).

The two friction angles, δ and φ , listed above define the constitutive behavior by prescrib-
ing the passive and active stress states λ±. In the shear-normal stress space (p,τ), the internal
friction angle φ bounds the possible values of shear and normal stresses by lines τ =±p tanφ .
The Mohr-Coulomb yield criterion defines the principal stress points for which the material tran-
sits between the active λ+ and the passive λ− states. The transition points are points (pzz,±τxz)

and lie in lines τ =±p tanδ , as shown in Figure 26b on page 81. In the figure, the two circles,
called Mohr circles, represent the two active/passive states. The Mohr circle is a visual tool that
shows the stress states of material in the (p,τ) space; the principal stresses are two diametrally
opposed points on the circle — maximum normal stresses are reached when rotating the circle,
so both points lie in the p–axis, and maximum shear appears on the vertical poles (notice that
points (pxx,±τxy) could be obtained by rotating the circles 180o). The SH model assumes pyy

equal to one of the four points depicted in the figure. Lastly, the basal normal stresses are related
by earth-pressure coefficient λ± as pxx = λ±pzz and pyy = λ±pzz.

In sum, the SH model considers an incompressible, cohesionless granular material for a
dense-snow avalanche sliding down an inclined slope with small curvatures. The shallowness
assumptions allow the use of depth integration along with Rankine’s earth-pressure (similar to
the VS model) controlled by the Mohr-Coulomb yield criterion, which classifies the SH model
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as a hydraulic model. The one-dimensional equations for conservation of mass and momentum
with local coordinates from Savage and Hutter (1991) are:

∂h
∂ t

+
∂

∂x
(ūh) = 0, (3.9)

∂hū
∂ t

+
∂ (hū2)

∂x
= hS− ∂

∂x
(
1
2

βh2), (3.10)

where the terms S(x, t) and β (φ ,δ ) include the stress relations mentioned above and are described
in detail in section 4.2 in Chapter 4. The term S relates to the gravitational acceleration taking
into account the curvature of the terrain and momentum correction due to the drag caused by
centrifugal forces. While the term λ± in Equation 3.5 on page 73 depends only on the internal
friction angle φ , the term β is defined in terms of the friction angles φ and δ . The SH model
is the first to define the earth pressure by both φ and δ for a granular material in an avalanche
model (Christian Kröner, 2014). According to experimental data, Hutter, Wang and Pudasaini
(2005) suggests the range of values for φ and δ are

30o < φ < 40o, 13o < δ < 22o.

Like other models, the SH model received improvements and extensions over the years.
The extension to curvilinear coordinates was expanded and tested by Hutter and Koch (1991)
and Greve and Hutter (1993), which added small changes to the friction terms of the equations.
Greve, Koch and Hutter (1994) and Koch, Greve and Hutter (1994) successfully extended the
SH model to the three-dimensional case, later extended to curved terrains by Gray, Wieland and
Hutter (1999), Wieland, Gray and Hutter (1999), Pudasaini and Hutter (2003). Hungr (1995)
proposed an alternative strain-dependent (rate-dependent) constitutive law for the earth-pressure
coefficient used in the SH model. See Fei et al. (2015) for a comparison between the SH and
Hungr models. Hwang and Hutter (1995) incorporated the energy balance equation by bringing
the elasticity of particles during collisions and allowing variable bulk density. Also considering
inelastic collisions, Takahashi and Tsujimoto (1998) included snow flocculation and temperature
to model dry and wet snow avalanches. Gray, Tai and Noelle (2003) simplified the SH model
with constitutive relations inspired by the MSU model (page 75), obtaining a hydraulic model
with a source term and constant earth-pressure coefficient. Their simplified version was used
by Viroulet et al. (2017) to investigate the take-off of the granular material due to bumps in
the bed. Zahibo et al. (2010) also used a simplified version of the SH model, but to propose
multiple analytical solutions for avalanche motion over different types of inclined channels.
Recently, Li and Zhang (2019) used a finite volume scheme to solve the SH model equations
over unstructured grids representing arbitrary terrains. Other relevant extensions and analogous
models include Iverson and Denlinger (2001), Denlinger and Iverson (2004), Luca et al. (2009),
Gray and Edwards (2014), Zhai et al. (2015), Rauter et al. (2018). In addition to snow and ice
flows, the SH model has been adapted and used for other types of materials and avalanches,
such as debris flows (IVERSON, 1997; MANGENEY-CASTELNAU et al., 2003; IVERSON;
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GEORGE, 2014; GEORGE; IVERSON, 2014), pyroclastic flows (PITMAN et al., 2003; Lê;
PITMAN, 2010; DOYLE; HOGG; MADER, 2011), and landslides (LIU; HE; ONYANG, 2016).

3.3.6 Slope Treatment

The hydraulic models cited earlier and others based on Saint-Venant’s equations on
page 72 assume small slope terrains due to the averaged velocity condition over the flow depth.
However, granular flows such as landslides and dense-snow avalanches often occur on steep
slopes. Under global coordinates systems, the inherent presence of vertical velocities over a steep
slope makes the pressure calculation not trivial as in the SWE (NI; CAO; LIU, 2019) — the
reason why models, like the SH model, end up using local coordinates or curvilinear coordinates.
Nevertheless, global coordinate systems are desired for simulating geophysical flows since
the terrain is typically described by Digital Elevation Models (DEMs) defined in Cartesian
coordinates systems (XIA; LIANG, 2018). Tai and Kuo (2008) used a unified coordinate system
from Hui, Li and Li (1999) to account for dynamic bed curvatures and general topography.
Over the years, many researchers attempted to solve the issue and adapt the SWE to arbitrary
terrains with steep slopes and large curvatures (BOUCHUT et al., 2003; LIANG; MARCHE,
2009; JUEZ; MURILLO; GARCíA-NAVARRO, 2013; HERGARTEN; ROBL, 2015; YUAN
et al., 2018; DONG; LI, 2021). Solutions include using different numerical methods, such as
the Smooth Particle Hydrodynamics (SPH) and Finite Volume Method (FVM) (LEVEQUE,
2002). Rodriguez-Paz and Bonet (2005) adapted the SPH for SWE over arbitrary terrains.
Vacondio, Rogers and Stansby (2012) presented a variational formulation for SWE under SPH
obtaining high particle resolution in small flow depths. The flexibility of FVM for unstructured
grids is the reason for its success in handling arbitrary terrain surfaces. Examples of solutions
for the slope treatment with the FVM are Hubbard (1999), Begnudelli and Sanders (2006),
Benkhaldoun and Sead (2010), Song et al. (2010), Liu et al. (2013), Hou et al. (2013a), Hou
et al. (2013b), Duran, Liang and Marche (2013), Xia and Liang (2018), Zhao et al. (2018),
Buttinger-Kreuzhuber et al. (2019). Another approach is the formulation of the equations in
terms of surface partial differential equations (SPDEs) (DECKELNICK; DZIUK; ELLIOTT,
2005). The FVM adaptation to element areas called the Finite Area Method (FAM) (TUKOVI;
JASAK, 2012) uses SPDEs to solve differential equations over geometric surfaces, such as thin
liquid films (CRASTER; MATAR, 2009), and flows over three-dimensional surfaces (RAUTER;
TUKOVI, 2018). Recently, Rauter et al. (2018) solved the SH model with the FAM to simulate
dense-snow avalanches over natural terrains.

3.3.7 Snow Entrainment

The difficulty encountered in experimental studies of bed erosion and entrainment mech-
anisms led researchers to use heuristic models for snow entrainment (ISSLER; PéREZ, 2011).
The typical approach appeared in the 60s along with the MSU model (page 75), considering front
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entrainment and gradual entrainment (EGLIT; DEMIDOV, 2005). Refer to Eglit and Demidov
(2005), Eglit, Yakubenko and Zayko (2020), Grigorian and Ostroumov (2020) for Russian
models of snow entrainment and Hopfinger (1983) for early entrainment models in western
research. The MSU model considers entrainment in the front resulting from the impact force
of the moving snow colliding with the snow cover at rest. The impact force pi results from the
encounter of the avalanche pressure forces p and the snow cover strength p∗. After the collision,
if p∗ < p, then the snow particles at rest get into motion and join the flow. The interface between
the erodible snow and the flow, called entrainment front, advances at speed14:

ue =

√
pi

ρ0(1−ρ0/ρ1)
, pi = p− p∗, (3.11)

where ρ0 is the snow cover density, ρ1 is the avalanche density, p∗ is the compressional strength
of the snow cover, and p is the avalanche full pressure; see Figure 27 on page 85. Note that
the direction of ue is not necessarily parallel to the flow velocity u, as it is perpendicular to
the entrainment front. The angle of the entrainment front α(x, t) is called the abrasion angle.
According to Gauer and Issler (2004), erosion and abrasion causes a deceleration of the avalanche
due to momentum transfer and hit impact. The deceleration force is given by

fe =
ρ0

ρ

ηeueu
h

, (3.12)

where ηe is the fraction of the eroded snow that is entrained. Gauer and Issler offer typical values
for medium-size dry-snow avalanches on a θ = 30o slope: h≈ 1 m, u≈ 30 m ·s−1, ρ/ρ0 ≈ 1∼ 2,
and ηewe ≈ 0.05∼ 0.10 m ·s−1. Other examples of erosion speed formulas can be found in Issler
(2014) — such as a version based on the abrasion angle ue = u tanα and another version based
in the dry coulomb friction µ coefficient and flow velocity

ue =
2gh(sinθ −µ cosθ)

u
, (3.13)

with ue ≈ 10−3 ∼ 10−2 m · s−1. Issler keeps the dense–flow depth h constant by considering that
mass is skimmed from the top of the flow at the same rate it is eroded from bed.

The MSU entrainment equations were incorporated into the SH model extension (BARTELT;
SALM; GRUBER, 1999; SARTORIS; BARTELT, 2000) by Betty Sovilla in Sovilla, Burlando
and Bartelt (2006), which also borrowed the constitutive equations from the NIS model (page 74).
For a small control volume in the interface with cross-sectional area A = wh, where w(x, t) is the
flow width, the entrained mass me and entrainment depth de over a time period ∆t are:

me = Au f ρ0∆t, de = u f
ρ0

ρ
∆t. (3.14)

The mass balance equation is then defined as:

∂A
∂ t

+
∂Q
∂x

= Se−Sd, Se = ue
ρ0

ρ
w, Sd =CdA, (3.15)

14 The details about the definition of the erosion speed ue can be found in Grigorian and Ostroumov
(2020).
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Figure 27 – Scheme of the avalanche front entrainment adopted by the MSU model. The entrainment
front speed ue is not necessarily parallel to the avalanche speed, as the entrainment front has
an angle α .

Source: Adapted from Grigorian and Ostroumov (2020).

where Cd ∈ [0,1] is the deposition coefficient, and Se and Sd are the volumetric snow entrainment
and deposition rates respectively. The deposition rate is considered zero if velocity is above
a critical value and implementations usually consider Cd = 1. The term Q = Au is called the
depth-averaged discharge flow. Sovilla went further and considered multi-layered snow covers,
allowing the abrasion angle to vary from layer to layer. The multilayer entrainment approach
allows not only frontal plowing but also step entrainment. The collection of works of Betty
Sovilla are among the most prominent and relevant studies in mass entrainment and deposition
in snow avalanches (SOVILLA, 2004; SOVILLA; BURLANDO; BARTELT, 2006; SOVILLA;
MARGRETH; BARTELT, 2007; LI et al., 2022).

A detailed review of erosion rate formulas can be found in Iverson and Ouyang (2015),
including formulas for other mass flow phenomena such as debris and pyroclastic flows (PITMAN
et al., 2003). Naaim et al. (2004) considers a thin layer, representing the entrainment front, upon
which a series of forces from both sides operate. The erosion of this thin layer happens in two
stages: first, the cohesion brokes up due to disintegration, and then entrainment occurs by the
progressive motion of snow portions. Such an approach finds good agreement with experimental
data (NAAIM et al., 2013). Fischer et al. (2015) uses the basal shear stress τb to compute the
entrainment rate as

Se =
τb

eb
∥ u ∥, (3.16)

where eb is a parameter interpreted as specific erosion energy. Recently, Edwards et al. (2021)
deviated from the heuristic models described above by successfully incorporating the friction
coefficient from Baker, Barker and Gray (2016) to simulate erosion and deposition. For simulation
validation purposes, erosion Ser, deposition Sd and entrainment Se rates were quantitatively
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analyzed by Li et al. (2022) through the following numerical measurements:

Se =
me

Abed∆t
, Ser =

mer

Abed∆t
, Sd =

md

Abed∆t
, (3.17)

where Abed is the initial surface area of the erodible bed and mer, me, and md are the eroded mass,
entrained mass, and deposited mass respectively.

3.3.8 Other Models

The historical review above covered models of dense-snow avalanches considered by
many researchers as the most popular in avalanche research. The relation between such models
is evident; each model shares at least one aspect, and the centenary sequence of models that
starts with sliding blocks in the 1920s, expanding with Voellmy’s work, the VS model and its
extensions, culminating along with Russian hydraulic models and the granular flow SH model
represent only the main trunk of avalanche research. Therefore, this section concludes with a list
of models that, although omitted above, are equally relevant.

• Conceptual Models

The class of conceptual models found in-between deterministic and statistical models
is investigated by Ancey, Meunier and Richard (2003). Such models use statistical and
probabilistic analysis to specify coefficient parameters of deterministic models (BAR-
BOLINI et al., 2000; ANCEY; GERVASONI; MEUNIER, 2004; MEUNIER; ANCEY,
2004). The fracture mechanics theory (CORTEN, 1972) is used by Cherepanov and Es-
parragoza (2008) to stipulate the conditions for a fracture-entrainment regime in order to
model step entrainment. The treatment of the snow avalanche as a non-Newtonian fluid
was approached by Bovet, Chiaia and Preziosi (2010), Abdelrazek, Kimura and Shmizu
(2014).

• The Random Kinetic Energy Model

The Random Kinetic Energy model (RKE) (BARTELT; BUSER; PLATZER, 2006) de-
scribes the frictional forces acting on an avalanche from the perspective of energy produc-
tion and dissipation by granular motion (BUSER; BARTELT, 2009). The RKE borrows the
fluctuation-dissipation relationship of kinetic energy dissipation and the random motion
of granules (LEMONS, 2003). Such an approach allows the variation of energy density
(usually assumed constant) along the avalanche length, allowing more realistic modeling
of entrainment and deposition (CHRISTEN; KOWALSKI; BARTELT, 2010). Valero et al.

(2015) extended the RKE for accounting for temperature effects and thermal entrainment.
A review of RKE-based models and a comparison against the classical Voellmy’s friction
model is provided by Issler, Jenkins and McElwaine (2018). The RKE model has been
used in conjunction with the SH model equations in full — with entrainment modeling
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— three-dimensional simulations of snow avalanches (FISCHER et al., 2015; RAUTER;
TUKOVI, 2018; RAUTER; KöHLER, 2020).

3.4 Powder-Snow Avalanche Models

Powder-snow avalanches, or airborne powder avalanches, belong to the large family
of physical phenomena of particle-driven currents called gravity currents (SIMPSON, 1999).
Gravity currents occur when two fluids of different densities get into motion due to gravity,
promoting the intrusion and propagation of one fluid into another (UNGARISH, 2009). Gravity
currents comprise a wide range of flows, from viscous magma to turbulent atmospheric currents,
from heat flows inside tunnels to enormous sediment movements under the ocean. Some flows,
such as katabatic winds, present minimal density ratios, while others may display more significant
differences. Powder-snow avalanches are an example of complex gravity currents due to their
multi-scale, non-conservative, highly-turbulent nature. Similar gravity currents include turbidity
currents on ocean floors and pyroclastic flows on volcano slopes. Refer to Simpson (1999),
Huppert (2006), Parsons et al. (2007), Ungarish (2009), Meiburg, Radhakrishnan and Nasr-
Azadani (2015) for reviews on gravity current research. Particularly for powder–snow avalanches,
refer to Ancey (2016).

Despite the fundamental differences between powder–snow avalanches and turbidity
currents, experimental research on powder–snow avalanches has used turbidity currents as a
fair analogy. Like powder–snow avalanches, turbidity currents are non-conservative, turbulent
(high Reynolds number values), and particle-driven flows. Turbidity currents also present mass
entrainment by deposition and suspension of particles and entrainment of ambient fluid. Early
models start with the pioneering work of Bagnold (1954) on the dispersion of sediments in fluids.
Turbidity currents were firstly modeled with depth-averaged equations by Plapp and Mitchell
(1960). Bagnold (1962) investigated the conditions which enable a turbidity current to maintain
its flow based in terms of turbulent energy. Bagnold referred this process as auto-suspension.
Later, Pantin (1979) revisited Bagnold’s work and showed that erosion and deposition of the
bed material can lead to the self-acceleration of the turbidity current, for what Parker (1982)
called ignition, but neglected entrainment of water. Refer to Wells and Dorrell (2021) for a
recent detailed discussion on the relationship of turbulence and entrainment/deposition processes
turbidity currents.

A crucial deviation from turbidity currents models relates to the densities of the fluids
involved. Turbidity currents models (MEIBURG; RADHAKRISHNAN; NASR-AZADANI,
2015)(OUILLON; MEIBURG; SUTHERLAND, 2019) use the Boussinesq approximation
(BOUSSINESQ, 1903) since the difference between sediment and water densities is sufficiently
small. For powder–snow avalanches, the difference between powder–snow and air densities
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invalidates the Boussinesq assumption (HOPFINGER, 1983). Non-Boussinesq15 models for
gravity currents can be found in (BIRMAN; MEIBURG, 2006; BARTHOLOMEW; LAIZET,
2019).

Since gravity current flows comprise two or more fluids with different densities, equations
use indices to specify properties for each fluid, for example, densities ρ0 and ρ1; see Figure 28
on page 89. Typically, letters can be used instead to facilitate reading, such as a and s, standing
for air and snow respectively, as in ρa and ρs. Models may use different approaches to deal with
multiple fluids by considering:

• two–phase flows – A set of equations models the different fluid types in the flow – one
balance equation for each fluid type, such as air and ice. As mentioned above, the equations
use separate variables for density, velocity, and others for each fluid type. Also, such
equations usually contain additional terms representing the exchange of mass and energy
between fluids;

• single–phase mixture flows – Instead of a separate equation for each fluid type, a single
set of equations models the mixture of fluids. In such an approach, some variables are
combined based on the volume concentration of each fluid. For example, the final value of
density becomes an interpolation of the densities of all fluids. The mixture representation
reduces the number of equations drastically.

This section separate the powder–snow avalanche models into the following categories:

• Similarity Models – described in subsection 3.4.1 on page 89. Also called conceptual

models, attempt to describe the flow through relations between flow quantities, such as
velocity and depth, using dimensional analysis. Therefore, similarity models are more
of a tool rather than a category of models since other types of models can use the same
relations provided by conceptual models;

• two–phase flows – described in subsection 3.4.2 on page 93 and briefly introduced above;

• single–phase mixture flows – described in subsection 3.4.3 on page 96 and briefly intro-
duced above.

The use of similarity theory in avalanche models refers to the use of non-dimensional
numbers and variables to model the flow. The dimensional analysis produces similarity criteria
to validate experiments and physical models; see section 3.2 on page 60. Also, the scaling
factors allow the use of simpler models and still offer critical insights into the dynamics of
such flows with large extensions in space and time (ECKART MCELWAINE JIM, 2012) —
15 For non-Boussinesq flows, the inertia created from the density differences is not negligible since the

denser fluid carries the most momentum, even with little concentrations per volume.
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Figure 28 – Representation of the different densities present in a powder–snow avalanche. Particles of
snow differ in density as snow is suspended and mixed with air. The snow cover contains a
high density of packed particles that get compressed as the avalanche runs over it or separate
into smaller clods and get incomporated into the dense flow. As turbulence and impact forces
eject snow into the air, particles get mixed with air and become much less dense. Models deal
with the different densities of snow by considering distinct phases or a single–phase mixture
with air based on the volume concentration of particles.

Source: Elaborated by the author.

turbidity currents, for example, can cover distances of thousands of kilometers and last for days
(MOSHER et al., 2017). Rottman and Linden (2002) discusses the use of dimensional analysis
in gravity current models.

3.4.1 Similarity Models

The first quantitative study — towards a mathematical model — of gravity currents is
attributed to von Kármán in 1940 (KARMAN, 1940); his studies of dense gas cloud propagation
suggested that the velocity of the nose u f is given by

u f√
g′h

=

√
2

∆ρ

= Fr, (3.18)

where h is the front depth, g′ = ∆ρg/ρ1 is the reduced gravity acceleration (recall the density
ratio ∆ρ from page 63), and Fr is the Froude number, related to the densimetric Froude number
in page 64. Later, Benjamin (1968) revised the formulation, considering the ambient fluid’s
height H, see Figure 29 on page 90, and obtained the following equation:

u f√
g′h

=

√
α(1−α)(2−α)

∆ρ(1+α)
= FrH , (3.19)

where α = h/H is the fractional height. Note that the Froude number is related to Benjamin’s
Froude number by Fr = FrHα−1/2. Benjamin’s work is considered the base of the theory of
inviscid gravity currents and has been used for gravity currents propagating with a high Reynolds
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number (HUPPERT, 2006). The formulation of the Froude number as a function of height was
later extended to Boussinesq flows by Borden and Meiburg (2013) and non-Boussinesq flows by
Konopliv et al. (2016) with the relations

FrH =
√

2α(1−α), and FrH =

√
2α

∆ρ

(1−α), (3.20)

respectively. Gröbelbauer, Fanneløp and Britter (1993) proposed a correction of the reduced
gravity term for higher density ratios

g′ = g
ρ1−ρ0

ρ1 +ρ0
. (3.21)

Figure 29 – Visual representation of the gravity flow lock–exchange experiment considered by Benjamin:
A channel with finite depth H filled with a light density fluid with density ρ0. A gravity current
of head height h advances with velocity u f as the heavier fluid of density ρ1 is released and
moves due to the hydrostatic pressure difference.

Source: Elaborated by the author.

The Froude number has also been used to determine cloud formation in powder–snow
avalanches. Early studies suggest that suspension occurs due to a combination of kinematic-
dynamic shocks and weak intergranular bounds (HOPFINGER, 1983). After achieving a velocity
of 10 m/s and the Froude number Fr > 2, roll-wave formation occur. The wavelength λ of roll
waves is estimated by Brock (1967) as

sinθλ

Fr2h
∼ 0.2−0.5. (3.22)

The mechanisms of formation and dynamics of cloud lobe structures in gravity currents are
the center of the study of plume theories (MORTON; TAYLOR; TURNER, 1956; ELLISON;
TURNER, 1959; TURNER, 1973). Tochon-Danguy and Hopfinger (1975), Hopfinger and
Tochon-Danguy (1977) extended the theory to powder–snow avalanches. Following the posterior
formulation of Britter and Linden (1980), the front velocity is dependent only on the buoyancy
flux g′Q and defines the non-dimensional front velocity ũ f as

ũ f =
u f

(g′Q)
1
3
, (3.23)
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where Q = u f he is the volume flow rate of supply and he is the height of entrained snow cover.
The plume theory for an inclined plume defines the mass continuity equation:

d(ūh)
dx

= α ū, (3.24)

where ū(x, t) is the mean velocity in the slope direction x and α is the air-entrainment coefficient.
For steady flows, the following relation is obtained through integration

h = α ū(t− t0), (3.25)

where t0 is the start time with h(t0) = 0. A semi-ellipses represent the plume with volume
evolution of

V = Eū3(t− t0)3, E =
πα2

2
, (3.26)

where E is the effective air-entrainment coefficient; see Figure 30 on page 91. Later, Parker,
Fukushima and Pantin (1986) generalized the entrainment process from Ellison and Turner
(1959) to build a system of depth-averaged equations that takes into account both sediment
and water entrainment in turbidity current flows. Stacey and Bowen (1988) considered the
vertical structure of the flow by studying the relations between the Richardson number and the
settling velocities of suspended particles. Baines (2001) provided an extended model, along
with laboratory experiments, considering the mixing process due to entrainment in gravity
currents flowing down slopes. Such models consider the powder–snow avalanches similarly
to other gravity current flows, particularly turbidity currents. These models can handle the
multi-scale nature of gravity flows through dimensional analysis. Despite their success, internal
flow properties, such as velocity profiles and turbulent motion, are often omitted or approximated
by coefficient terms.

Figure 30 – Similarity models usually model the powder–snow avalanche as a geometrical shape — as
the half-ellipse. The equations describe the movement of the ellipses based on the center of
mass. The growth due to air entrainment is calculated through the ellipse perimeter..

Source: Elaborated by the author.
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The Kulikovskii–Sveshnikova model (KULIKOVSKII; SVESHNIKOVA, 1977), the KS
model, steps forward by considering the flow as a turbulent flow of a material in suspension. The
KS model includes a volume change equation and momentum conservation equations considering
the kinetic energy generated from turbulence. For a two–dimensional semi-elliptic cross-section
powder–snow avalanche, the KS model system of balance equations is:

dAe

dt
=

Peua

2
, (3.27)

dm̃
dt

= ρaȦe + ˙̃me + ˙̃md, (3.28)

d(m̃u)
dt

= m̃gsinθ −ρk2Lu2− cxρaHu2

2
− ˙̃mdu, (3.29)

d
dt

(
∂K
∂ Ḣ

)
− ∂K

∂H
= Q+ξ u̇a. (3.30)

Equation 3.27 describes the change of volume due to turbulent mixing of surrounding air; Ae

is the area of the semi-elliptic shape representing the cloud volume, Pe is the perimeter, and ue

the velocity of air-entrainment. Equation 3.28 represents the change of mass per unit length,
m̃; ρa is the air density and the right hand side terms are respectively the entrainment of air,
snow entrainment, and snow deposition. Equation 3.29 is the change of momentum defined
by the gravitational acceleration, the turbulent friction, the air resistance and snow deposition;
ρ = m̃/Ae is the average density of the snow-air mass, cx is the coefficient of aerodynamic
resistance of the cloud, and Le and He are the horizontal and vertical semi-axis of the ellipse;
see Figure 30 on page 91. The last equation, Equation 3.30, relates to the internal motion in
the cloud; K is the kinetic energy, Q is the generalized force, and ξ is the turbulent diffusion
coefficient. Refer to Bozhinskiy, Losev and Bartelt (1998), Ancey (2001), Eglit and Demidov
(2005), Eglit, Yakubenko and Zayko (2020) for comparisons and discussions on the KS model.

The KS model received many adaptations and extensions over the years. Beghin (1979),
Beghin and Brugnot (1983) simplified the model by discarding entrainment and reduced the
system to only one differential equation. Beghin, Hopfinger and Britter (1981) introduced the
dependence of the slope angle into the growth rate of the cloud and ignored Equation 3.30 in
order to model Boussinesq clouds. Decades later, Ancey (2004) combined the KS model with
the simplifications introduced by Beghin, calling the extension the KSB model. Ancey used the
KSB model to simulate powder–snow avalanches by adapting the KSB model to non-Boussinesq
clouds and algo including an entrainment function dependent to the Richardson number16 Ri:

dV
dt

= αv
√

V u, αv =

e−1.6Ri2 Ri≤ 1,

0.2/Ri Ri > 1,
(3.31)

16 Smaller Richardson number values imply greater instabilities and therefore higher entrainment rate
(ANCEY, 2016).
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where αv relates to the entrainment coefficient. Turnbull, McElwaine and Ancey (2007) further
improved the KSB model by including the entrainment of snow in the volume equation to better
predict densities with an extra term in

dV
dt

= αv
√

V u+u f he, (3.32)

where he is the depth of entrained snow cover. In parallel, Parker, Fukushima and Pantin (1986)
incorporated the turbulence and entrainment terms into plume theories to model turbidity currents.
However, the methods of turbidity currents assume that water and sediment entrainment at the
current upstream end (tail) is continuous. This assumption does not hold for powder–snow
avalanches (FUKUSHIMA; PARKER, 1984). The discontinuity was handled by Fukushima
and Parker (1990), that added the conservation of kinetic energy of turbulence and entrainment
of snow and air, as previously mentioned, to simulate powder–snow avalanches. Their depth-
averaged method was based on the important work of Fukushima (1986), which also considers
the shape of the avalanche to be a cylinder of half-elliptic section and assumes the avalanche
does not show significant transverse spreading. An extension of the model for arbitrary three–
dimensional terrains was later proposed by Fukushima and Hayakawa (1993). The method was
later applied to model the flow of suspension thermals by Akiyama and Ura (1999), Fukushima,
Hagihara and Sakamoto (2000). Turnbull and Bartelt (2003) used Parker’s model to study the
exchange of mass due to entrainment and deposition in powder–snow avalanches. Rastello and
Hopfinger (2004) included snow entrainment by proposing the rate of particle suspension as a
function of the shear stress and particle Reynolds number.

All models so far model the powder–snow avalanche as a finite volume of a homoge-
neous turbulent suspension of ice particles. The simplified representations in similarity models,
including the KSB model and its ramifications, use geometrical shapes — such as the half-ellipse
— to describe the avalanche cloud. Also, such models are restricted to steady flows or only certain
avalanche regimes (usually the flow regime). However, most real powder–snow avalanches
contain dynamic layers of variable density. In particular, the front region and the layer close to
the bed surface present much greater densities than the rarefied snow–air cloud.

3.4.2 Two-Phase Models

The class of models, called two-phase, two-layer or mixed avalanche models, treats
the flows of the powder cloud (PSL) and dense snow (DSL) layers separately and models the
intricate mechanisms of mass exchange between them — although the term two–phase17 is
usually applied to models that split the PSL into two phases, a phase for air and the other for ice.
17 The term two–phase has a broader meaning in fluid mechanics, such as the characterization of two

or more fluids with a defined interface between them. However, some avalanche models consider the
mixture of fluids with no separating interface. Refer to (PROSPERETTI; TRYGGVASON, 2007) for a
formal definition of multiphase flows. In this text, the terms two–phase and two–layer should clarify
the distinction.
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Figure 31 on page 94 depicts the general scheme of mixed snow avalanches adopted by such
models; besides air, labeled by the letter a, the numbers 0, 1, and 2 label the snow cover, the
dense core, and the powder cloud layers, respectively. Each layer i has density ρi, velocity ui and
height (depth) hi.

Figure 31 – Representation of a multi–layered scheme of powder–snow avalanches utilized by mixed
avalanche models. The snow cover has height h0, density ρ0, and no velocity. The only term
related to air is its density ρa. The other layers, 1 and 2, representing the dense snow core
and the powder–snow cloud, respectively, have heights hi, densities ρi, and velocities ui. A
different set of equations models each avalanche layer, 1 and 2, and additional terms describe
the mass and momentum exchange between both layers and include the role of air and snow
cover as entrainment sources.

Source: Adapted from Nazarov (1991).

Early two-layer Russian models (EGLIT, 1983; NAZAROV, 1991), reviewed by Eglit
(1998a), Eglit, Yakubenko and Zayko (2020), use five balance equations for the PSL and DSL
and a set of variables to control mass exchange between layers. For instance, the respective
continuity equations for the PSL and DSL flows are:

∂h2

∂ t
+

∂h2u2

∂x
=V2a +V21−Vs, (3.33)

∂h1

∂ t
+

∂h1u1

∂x
=−V21 +V10 +Vs, (3.34)

where Vi← j are rates of change in height due to transport of mass from layer j towards layer i; V2a

is the effect of air entrainment in the powder cloud layer, V21 and V10 are for snow entrainment
into the PSL and DSL, and Vs is for snow sedimentation/deposition. The consumption of the
snow cover due to entrainment is then given by

∂h0

∂ t
=−V10. (3.35)

The terms Vi j are defined as
V2a = mau2ρ

∗
2a, (3.36a)

V21 = m12|u2−u1|ρ∗21, (3.36b)
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V10 = m01|u1|ρ∗10, (3.36c)

ρ
∗
i j =

√
ρiρ j

ρi +ρ j
, (3.36d)

where ma and mi j are empirical coefficients. Equations 3.36a to 3.36c mean that the rate of
growth depends on the velocity difference and a combination of densities of the layers. Equations
3.36b and 3.36c work only for h1 > 0 and h0 > 0, respectively. The complete set of equations
also include conditions for h j = 0 and x > x f , where x f is the leading front of the DSL position.
The momentum equations for each layer also use terms τi j to represent friction forces between
layers; see Eglit (1998a).

Another approach uses the differential equations of continuum mechanics with the
addition of terms of exchange of mass and momentum between phases. Scheiwiller (1986)
considers the mixture of two incompressible fluids, air and powder snow cloud, occupying
fractions of volume18 c(x, t)i, so density is given by

ρi = ciρ̂i, ∑
i

ci = 1, (3.37)

where ρ̂i is the material density of phase i. Scheiwiller starts from the balance equations

∂ρi

∂ t
+∇ · (ρiui) = 0, (3.38)

∂ρiui

∂ t
+∇ · (ρiui⊗ui) = ∇ · τi +ρi fi +Mi, (3.39)

∑
i

Mi = 0, (3.40)

where Mi is the momentum transferred to phase i, τi is the Cauchy stress tensor of phase i, and fi

is the body force of phase i. Equation 3.40 dictates that no momentum is produced by transfer
processes and Equation 3.38 implies ρi constant. Also, due to incompressibility, pressure p can
be separated from the constitutive equations and the stress tensor becomes

τi =−ci pI + ti, (3.41)

where the deviatoric tensor ti is given by a constitutive relation. Equations 3.38 and 3.39 can be
rewritten as

∂ci

∂ t
+∇ · (ciui) = 0, (3.42)

∂ciui

∂ t
+∇ · (ciui⊗ui) = ∇ · γi + ci fi +

Mi

ρ̂i
, (3.43)

where γi accounts for stresses. Scheiwiller also includes eddy viscosity and laminar viscosity
into the stress tensor in order to account for turbulence by using the so–called k–ε–model
18 The particle volume fraction cp in a two–phase flow is the ratio between the part of the volume Vp

that contains the particles of one phase and the volume V itself, i.e., cp = limV→0Vp/V (ZWINGER;
KLUWICK; SAMPL, 2003).
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(LAUNDER; SPALDING, 1974). For a complete formulation and details refer to Issler et al.

(2000). Naaim (1995) compared the model simulation to experimental data. Later, Naaim and
Gurer (1998) modified the model to account for turbulence reduction induced by particles using
the turbulence model of Chen and Wood (1985). Romanova (2017) used a similar model, which
considered two-phase with the k-e model, using the Herschel-Balkley fluid model (KERN;
TIEFENBACHER; MCELWAINE, 2004) to describe the constitutive relations of snow.

Recently, LEPERA (2020) proposed a complete system of equations for a two-phase
model of powder-snow avalanches. The model includes thermodynamic balance equations and
treats the energy transfer between phases. The equations come from granular flow models and
split the stress tensor into a collisional and a frictional part. See Andreotti, Forterre and Pouliquen
(2013) for details on the theory used in the model.

3.4.3 Single-Phase Mixture Models

The Continuum Mixture Theory (CMT) (ATKIN; CRAINE, 1976), briefly described in
section A.1, models the mixture of fluids by considering the superposition of multiple single
continua that represent the mixing fluids (constituents). Particles of all participating fluids
(phases) can occupy the volume simultaneously. The occupancy of particles represented by
fractions of volume becomes a central concept and determines the mass of constituents present
in a particular volume.

The model of Scheiwiller, previously described on page 95, use the exact same concept.
The final density given by Equation 3.37 receives the name of mixture density in the CMT
context, and the same may apply to any other variable. Therefore, by assuming a mixture
velocity, for example, the number of momentum equations can be reduced to one instead of
using a separate equation for each constituent. One example of such an approach is the model
of Dutykh, Acary-Robert and Bresch (2009), which restricted both phases to share the same
velocity u and defined the mixture density ρ and dynamic viscosity µ as

ρ = cρs +(1− c)ρa, µ = cρsνs +(1− c)ρaνa = µ0 + ν̄ρ, (3.44)

where c = cs is the volumetric concentration of snow particles in the cloud, the coefficients νi

are the kinematic viscosities of air and snow, and µ0 and ν̄ are

µ0 =
νaρaρs−νsρsρa

ρs−ρa
, ν̄ =

νsρs−νaρa

ρs−ρa
. (3.45)

Fick’s law dictates that the mixing of fluids follows a quasi-compressible constitutive equation

∇ ·u =−∇ · (κ∇ logρ), (3.46)

where κ is a coefficient related to the kinematic viscosity. In other words, the equation above
accounts for diffusive effects between the consituents (phases) due to density differences. From
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Equation 3.46, Dutykh, Acary-Robert and Bresch (2011) rewrites the equations into an incom-
pressible system following the approach of Kazhikhov and Smagulov (1977) and using a new
variable for velocity

v = u+κ∇ logρ, (3.47)

referred as the fluid volume velocity, and taking κ = 2ν̄ constant. The new system of equations is

∇ ·v = 0, (3.48)

∂ρ

∂ t
+v ·∇ρ = 2ν̄∆ρ, (3.49)

ρ
∂v
∂ t

+ρ(v ·∇)v =−∇π−2ν̄
t
∇v∇p+2ν̄∇ρ∇v+ρg+∇ · (2µD(v)), (3.50)

where D(v) is the strain rate tensor

D(v) =
1
2
(∇v+(∇v)T ), (3.51)

the gravitational acceleration is projected into local coordinates g = (gsinθ ,−gcosθ), and
π(x, t) = p+4ν̄µ0∆ logρ is the pressure term. Notice that when κ = 0, the whole system falls
back to the classical Navier-Stokes equations for incompressible fluids in u. A detailed analysis
on the numerical methods and the model can be found in Calgaro, Creusé and Goudon (2015).
An approximation of the mixture model to powder-snow avalanches assuming the Boussinesq
regime was presented by Étienne, Saramito and Hopfinger (2004). Recently, Gurjar (2023)
proposed a 2D framework extending the work of Bartelt et al. (2016) for the DSL and combined
with the mixture modeled by Fick’s law by Dutykh, Acary-Robert and Bresch (2011) mentioned
above.

Some models extend dense-snow avalanche models to support the formation of the
powder–snow cloud on top of the dense flow layer by coupling two separate models. For
example, Bartelt, Kern and Christen (2000) uses the VS model (see page 73) to simulate the
dense core but includes a term for suspension in the mass conservation equation to feed the PSL.
A simplification of Parker, Fukushima and Pantin (1986) models the PSL, and the suspension
term enters as a mass entrainment term in the equations. In turn, Zwinger, Kluwick and Sampl
(2003) uses a modified version of the SH model (see page 82) — imposing another condition
to the normal stress at the bottom — and a modification of the k–ε turbulence model for the
powder–snow layer. The momentum balance is similar to Equation 3.39 on page 95, but as in the
single mixture model, the particle volume fraction defines the mixture density, and the velocity
is the same for both phases:

∂ρu
∂ t

+∇ · (ρu⊗u) =−∇ · p+∇ · τ̄ +∇ · τRey +ρg, (3.52)

where pressure and stress are split, as mentioned earlier with equation Equation 3.41, p is the
static pressure. The stress tensor is also decomposed into mean values of the viscous stress τ̄ ,
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and the turbulent Reynolds stresses τRey defined as

τ
Rey
i j = µtur ·

(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3

(
µtur

∂uk

∂xk
+ρk

)
δi j, (3.53)

µtur =Cµρ
k2

ε
, (3.54a)

where Cµ is a constant with value 0.09, δi j is the Kronecker delta function, k is related to the
turbulent kinetic energy and ε to its dissipation — both variables also receive balance equations.
The transfer of mass and momentum between the DSL and the PSL occurs in a thin region close
to the lower bounding surface of the PSL, referred to by Zwinger et al. as the re-suspension layer
— later named transition layer by Sampl and Granig (2009). The model of the transition layer is
a set of boundary conditions rather than another flow layer. Such boundary conditions consider
the DSL upper surface as a solid wall, and the turbulent particle volume flux at the wall jwall is

jwall =−
τwall

ρ

1
Sctur

∆c
∆u

, (3.55)

where τwall is the local wall shear stress, ∆u is the mean velocity difference based on the wall
distance and the von Kármán constant, ∆c is the volume concentration difference also based on
wall distance and density, and Sctur is the turbulent Schmidt number. A brief introduction and
application of the model can be found in Sampl and Zwinger (2004).

3.4.4 Entrainment

Snow entrainment and deposition play a central role in powder–snow avalanches. The
roll motion of large structures causes air entrainment, which increases the volume of the cloud. In
the front, the transfer of momentum due to air entrainment results in significant drag (ÉTIENNE;
SARAMITO; HOPFINGER, 2004) — the cause of turbulence and suspension of snow from
lower layers. In turn, snow entrainment from turbulent suspension and snow cover disintegration
due to front impact is crucial to momentum transport. Deposition, on the other hand, settles
down snow and dissipates energy.

Issler (1998) considers a lower saltation layer, labeled 12 following Nazarov’s scheme in
Figure 31 on page 94, responsible for the mass exchange in the powder–snow avalanche. The
depth of the saltation layer h12 is given by

h12 = β
2
0

u2
12

2g′
(3.56)

where g′ = gcosθ , β0 = O(0.1) is a constant extracted from experimental data, and U is the
velocity of the layer. The balance of mass for the saltation layer is governed by the rates of
erosion Qerod , sedimentation Qsed , suspension Qsusp, and settling Qsett :

∂ (h12ρ12)

∂ t
+∇ · (h12ρ12u12) = Qerod−Qsed−Qsusp +Qsett , (3.57)
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where ρ12 = 20 ∼ 50 kg/m3 is the density of the saltation layer. Issler describes the mass
exchange as a cycle between the suspension and saltation layers represented by particle con-
centrations from both layers. Such cyclic movement comes from the circling motion caused by
turbulent eddies; particles keep getting ejected and settled in the saltation layer — see Figure 32
on page 99. The exchange rate terms in the right hand side are constructed from a series of
constants based on the k–ε turbulent model (used in the suspension layer) — see Issler (1998)
for details. A similar approach is taken by Bartelt, Kern and Christen (2000), mentioned in
the end of the last section, but considering both the saltation and dense–snow layers the same.
Updates including temperature changes and energy flux calculations were presented by Bartelt et

al. (2016) and Bartelt et al. (2018).

Figure 32 – Representation of mass exchange between the avalanche layers employed by Issler. The
turbulent eddies, represented by the circle arrows, move snow up and down through suspension
and settlement through denser regions. The four processes, erosion, deposition, suspension
and settling, are represented by the vertical arrows in the figure.

Source: Adapted from Issler (1998).

The experiments on the suspension of currents from localized front blow-out of particles
performed by Carroll, Turnbull and Louge (2012) and the works of Louge, Carroll and Turnbull
(2011) and Carroll, Louge and Turnbull (2013) form a detailed model for snow avalanche front
dynamics. In particular, the mass flow rate of snow emerging from the front is given by

dm
dt

= ρ0(λh0 cosθW )u, (3.58)

where ρ0 is the snow cover density, λ is the fraction of the fluidized depth that is scoured, λh0 is
the entrained depth, and W is the width of the frontal region.

Recently, Ivanova et al. (2021) proposed a depth-averaged model with turbulence applied
to powder–snow avalanches simulations. The model splits the velocity along the depth u =U +u′

into mean velocity U and fluctuation velocity u′ components. The mass balance for the depth-
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averaged model due to entrainment is

∂ ĥ
∂ t

+
∂ (ĥU)

∂x
= Se +Sa, (3.59)

where ĥ is the cloud height with entrainment (the model distinguishes the cloud height without
air entrainment h, and with air entrainment ĥ), Se and Sa are the snow and air entrainment souce
terms, respectively. The air entrainment, caused by turbulence, is described as

Sa =

(αUU +αT
√
⟨u′2⟩) ρ̂

ρ
, ρ̂ > 2ρa,U > 0

0, otherwise,
(3.60)

where ⟨u′2⟩= 1
h
∫ h

0 u
′2dz is the variance of velocity fluctuations representing the turbulent kinetic

energy, αU ∈ [0,1] is the steady entrainment coefficient, αT ∈ [0,1] is the turbulent entrainment
coefficient, and ρ̂ is the mean density of the cloud and follows the relationship ρh = ρ̂ ĥ. The
snow entrainment follows an alternative approach by defining an oscillatory injection velocity
Ue(x, t) based on a Gaussian pulse of half-length L0 and amplitude A0,

Ue = A0 exp
[
−(x− x0−S0t)2

2 ·L2
0

]
, (3.61)

where S0 is the propagation velocity of the pulse and x0 is the starting position of core at time
t = 0. The suggested values for the densities are ρ = 7 kg/m3 and ρ0 = 10 kg/m3. The final
snow entrainment term is given by

Se =
ρ

ρ0
Ue. (3.62)

3.5 Numerical Methods
This section describes some of the different numerical approaches used to solve the

mathematical models described in this chapter.

The Discrete Element Method

An example of a direct approach is the so–called Discrete Element Method (DEM),
known as molecular dynamics. The DEM treats the avalanche body as a set of tiny volume
elements called particles; recall the scale representation in Figure 21c on page 69. Simple physical
laws, such as Newton’s second law of motion and Euler’s balance of momentum, model the
motion and interactions of particles (PUDASAINI; HUTTER, 2007). The DEM has been used to
compute snow fracture during the start of avalanches (GAUME et al., 2014), to investigate failure
behavior in weak snow (MULAK; GAUME, 2019), to compute the granular avalanche impact
forces (ALBABA; LAMBERT; FAUG, 2018), to predict the internal friction of granular flows
(FAVIER et al., 2009), to simulate granular debris flows (ZHOU et al., 2020), and to model the
inter-granular bond and collision of snow particles (KABORE et al., 2021). Although the DEM
provides relatively more straightforward models, these models require hundreds of thousands of
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elements. For large-scale 3D simulation domains, the number of elements can rise to millions of
particles. In many cases, such computational effort can become a limitation. Moreover, most
applications of the DEM consider only dry granular materials. On the other hand, applications
where the interstitial fluid is significant, such as wet-snow avalanches and debris flows become a
challenge to DEM, as cohesion plays an essential role.

The Material Point Method

Allied to the advances in computational resources, modern methods such as the Material
Point Method (MPM) (SULSKY; ZHOU; SCHREYER, 1995) are becoming popular among
full three-dimensional kinetic models. The hybrid nature of MPM offers an efficient framework
for handling deformations through constitutive relations, making the method very attractive for
avalanche applications. Recently, Li et al. (2021) proposed a three-dimensional and real-scale
modeling covering different flow regimes for dense snow avalanches with impressive results.
Their model comes along with a recent series of investigations, using the MPM, into snow failure
processes and crack propagation (GAUME et al., 2018; GAUME et al., 2019; TROTTET et al.,
2022), erosion and entrainment mechanisms (LI et al., 2022), detrainment in natural terrains
(VÉDRINE; LI; GAUME, 2022), and flow regimes (LI et al., 2020)19. The MPM has also
been used to simulate hyperelasticity in granular flows (HAERI; SKONIECZNY, 2022), and
landslides (ZHAO et al., 2019).

Direct Numerical Simulations

The Direct Numerical Simulation (DNS) methods utilize fine numerical grids to capture
all scale turbulent structures, as opposed to the large-scale restricted models listed below. The
DNS does not use any averaging techniques and requires enormous amounts of discrete cells.
Due to its unparalleled accuracy, the DNS is usually used as a ground truth solution to test the
accuracy of other numerical methods (YEH et al., 2013). Recently, Gurjar (2023) utilized the
DNS approach to simulate powder-snow avalanches. Most methods listed in subsection 3.4.2
and subsection 3.4.3 are usually solved with DNS.

Large-Eddy Simulations

Large Eddy Simulation (LES) balances accuracy and computational efficiency by directly
simulating only large-scale structures. Such structures are energy-containing large eddies. The
Navier-Stokes equations are filtered in the LES approach, so only the large eddies are solved
numerically (using methods similar to DNS). The small-scale turbulent structures are modeled
by Subgrid-Scale (SGS) models and are referred to as subgrid-scale effects. Such SGS models
appear in the equations in the stress tensor terms. LES has been used to compute flow over large
areas of complex terrain (VIONNET et al., 2017; ROHANIZADEGAN et al., 2023). Examples
of LES applications in avalanche phenomena can be found in Chawdhary et al. (2018), Frantz et

19 The SLAB (EPFL, 2022), the EPFL Snow and Avalanche Simulation Laboratory in Switzerland, is
worth mentioning, whose researchers are responsible for many recent state-of-the-art publications in
avalanche research.
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al. (2021), Kyrousi et al. (2018).

Reynolds-Averaging Navier-Stokes Model

The Reynolds-Averaging Navier-Stokes Model (RANS) decomposes the model’s vari-
ables (such as velocity and pressure) into their mean and fluctuating components. The RANS
provide computationally efficient solutions for Navier-Stokes problems. The variable decomposi-
tion makes this class of methods suitable for simulating turbulent flows — however, the RANS
present limitations in capturing certain flow features, such as large eddy structures. Meiburg,
Radhakrishnan and Nasr-Azadani (2015) lists the application of RANS in turbidity current like
phenomena. Navas-Montilla et al. (2019) approaches such limitations on simulating turbulent
shallow flows. Recently, extending from Gavrilyuk, Ivanova and Favrie (2018), Ivanova et al.

(2021) used RANS to simulate powder-snow avalanches under the shallow water model.

3.6 Software Packages

The crucial importance of snow avalanche models in natural hazards leads to developing
software for research or use in hazard mapping by governmental institutions and companies.
Over the decades, governments and institutions collaborated on developing such software, as in
the case of the Austrian government and the Swiss Federal WSL20 Institute for Snow Avalanche
Research (SLF). This section contains a brief list of software packages and libraries, commercial
and open source, used for the simulation and study of snow avalanches. A discussion on the
limitations and calibration of some packages in the list can be found in Jamieson, Margreth and
Jones (2008).

3.6.1 Proprietary & Commercial Software

• AVAL-1D: Developed by the SLF, the AVAL–1D (CHRISTEN; BARTELT; GRUBER,
2002) is a software package consisting of two modules, the FL–1D for dense-snow
avalanche simulations and the SL–1D for powder–snow avalanches. AVAL–1D is com-
monly used by avalanche practitioners to predict runout distances and flow velocities
Based on the VS model, the details of the models can be found in the works presented by
Issler (1998), Bartelt, Salm and Gruber (1999), Issler et al. (2000). The package employs
the finite difference method to solve equations. Oller et al. (2010) discusses its applications
with real avalanche cases and offers several values for the parameters of the VS model.
Figure 33a shows a screenshot of the software. More information is available at AVAL-1D,
WSL (2022).

20 The Swiss Federal Institute for Forest Snow and Landscape Research (WSL) monitors and studies
forest, landscape, biodiversity, natural hazards and snow and ice. WSL is a research institute of the
Swiss Confederation and part of the ETH Domain (SLF, 2022).
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• SAMOS-AT: Developed in 1999 and introduced by Zwinger, Kluwick and Sampl (2003),
the Snow Avalanche MOdelling and Simulation (SAMOS) tool (SAMPL; ZWINGER,
2004) was developed for the Austrian Federal Ministry for Agriculture, Forestry, and
Environment for avalanche risk assessment. SAMOS is a simulation tool for powder–snow
avalanches and uses a two–layer model to simulate the DSL and PSL. SAMOS uses the
SH model for dense snow flows and a single mixture phase for the PSL.

In 2007, an improved version of the software, named SAMOS–AT (SAMPL; GRANIG,
2009) (AT stands for Advanced Technology), brought significant modifications to the
model. SAMOS–AT solves the DSL with a Lagrangian set of particles representing
columns of variable height containing volumes of the dense flow over the bed surface,
similarly to the SWE approach. A two–phase model represents the PSL, with separate
mass and momentum balances for air and powder snow. A discussion and analysis of the
parameters of the software can be found in Fischer (2013), Fischer et al. (2015).

• RAMMS: Introduced by (CHRISTEN; KOWALSKI; BARTELT, 2010) and developed in
SLF, the RApid Mass Movements Simulation (RAMMS) software package offers simula-
tions for three phenomena: avalanches, rockfalls, and debris flows. RAMMS is currently
used for hazard mapping in Switzerland and therefore follows the Swizz guidelines. The
system combines the VS and the RKE models (subsection 3.3.8 on page 86) and can simu-
late full three–dimensional dense flows. Figure 33b shows a screenshot of the software.
Information about RAMMS is available at RAMMS, WSL (2022).

Figure 33 – Examples of graphical user interfaces of commercial software packages for snow avalanche
simulation.

(a) Simulation of a one-dimensional snow avalanche
in the AVAL-1D software package.

Source: AVAL-1D, WSL (2022).

(b) Simulation of a dense-snow avalanche over a three-
dimensional terrain in the RAMMS software pack-
age.

Source: RAMMS, WSL (2022).
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3.6.2 Open Source / Free Software

• Xcompact3d: Xcompact3d and its modules is a framework of high-order finite-difference
flow solvers dedicated to the study of turbulent flows (BARTHOLOMEW et al., 2020)
— in particular, DNS and LES simulations. Introduced by Frantz et al. (2021) on the
simulation of turbulent gravity currents under the Boussinesq regime, the software has
found many applications worldwide by many research groups, such as wake and jet
flows. The software is available at <https://www.incompact3d.com/about.html> (LAIZET;
LAMBALLAIS, 2022).

• TRENT2D: Originating from Armanini, Fraccarollo and Rosatti (2009), the TRENT2D
package provides accurate solutions for two-dimensional dense snow avalanche simula-
tions. The package models the equations in a global coordinate system, making it suitable
for complex terrains. Refer to Zugliani and Rosatti (2021) for a complete description of
the models and methods utilized by the software.

• TITAN2D: Introduced by Patra et al. (2005), TITAN2D simulates granular flows over
large-scale natural terrains. Its roots track back to the simulation of volcanic avalanches
based on the SH model (PITMAN et al., 2003). Information about the methods imple-
mented by the package can be found in Simakov et al. (2019), Patra et al. (2020). The
source code is available at <https://github.com/TITAN2D/titan2d>.

3.7 Avalanche-Like Phenomena in Computer Graphics
The numerical methods cited in the previous sections are also present in Computer

Graphics research and applications, with various adaptations and optimizations for computational
efficiency. For instance, aside from water simulation, the particle-based method SPH found
many applications over the years, such as the solution of SWE (SOLENTHALER et al., 2011;
CHLDEK; URIKOVI, 2015; XIA; LIANG, 2016), the animation of lava flows in volcano
eruptions (ZHANG et al., 2017), viscoplastic materials (PAIVA et al., 2009), granular flows
(BELL; YU; MUCHA, 2005; ALDUáN; OTADUY, 2011), snow avalanches (YNDESTAD,
2011; JONTHAN; DANIEL, 2021), and snow compression (GISSLER et al., 2020).

Eulerian methods based on adaptive grids were used to animate debris flow (WANG et

al., 2015) and real-time granular flows for sand animation (ZHU et al., 2019). Other relevant
numerical methods are the APIC (JIANG et al., 2015), Power Particles (GOES et al., 2015), and
(ZHU et al., 2013) for large-scale domains.

Since the debut of MPM into the graphics community by Stomakhin et al. (2013) on the
animation of snow for Disney’s Frozen movie, MPM has rapidly become the state-of-the-art
for many types of material simulations. The flexibility of MPM has allowed the simulation
of cloth (JIANG; GAST; TERAN, 2017), elastoplastic materials (GAO et al., 2017), fase-

https://www.incompact3d.com/about.html
https://github.com/TITAN2D/titan2d
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changing materials (STOMAKHIN et al., 2014), plastic flow for foam (YUE et al., 2015; RAM
et al., 2015), multi-species materials and fluid mixtures (TAMPUBOLON et al., 2017; GAO
et al., 2018), and fracture of materials (WOLPER et al., 2020). In the realm of avalanche-like
phenomena, Zhao et al. (2019) recently used MPM to animate landslides, and Gaume et al.

(2018) produced incredible animations of slab avalanches using MPM.

Due to its complexity and high computational demand, alternative approaches solve
the turbulent features of flows. In particular, procedural techniques for emulating turbulent
motion and generating turbulent patterns became very successful. A few examples are Bridson,
Houriham and Nordenstam (2007), Narain et al. (2008), Kim et al. (2008a), Wang et al. (2020).

Over the years, people in the entertainment industry have been using graphics tools and
usual fluid simulation techniques to emulate snow avalanches (KAPLER, 2003; KIM; FLORES,
2008; imageworks, 2020; Failes, Ian, 2021). Tsuda et al. (2010) is the first to bring physical
properties of snow into account by producing a mixed simulation of dense snow flow and powder–
snow layers, followed later by Güçer and ÖZGÜÇ (2014), which applies molecular dynamics to
the flow. Cordonnier et al. (2018) proposed a method for generating visual landscapes covered
by snow that considers the effect of avalanches over time using a hydrostatic model. Tillgren
(2020) used a procedural scheme based on Voronoi meshes to generate slab fractures on snow
avalanches. Recently, Liu et al. (2021) presented a Position-based Dynamics (PBD) framework
combined with the Bingham viscoplastic model to simulate snow avalanches. To the author’s
knowledge, these few references are the only publications directly or indirectly related to the
digital animation of snow avalanches.

3.8 Remarks
• Plumes are almost stationary, with horizontal velocities of 4 m · s−1, compared to the front

velocities of up to 55 m · s−1.

• The plume velocity is independent of slope angle due to air entrainment.

• The air intake is velocity-dependent at the leading edge and is responsible for the cloud
growth.

• Avalanches can grow their masses up to five times on average.

• Laboratory experiments show that slab-avalanche size distributions are scale-invariant.

• The Voellmy friction model combines a dynamic friction component τh with a Coulomb-
like dry friction component τd:

τh = g
u2

ξ h
, τd = µgcosθ .

The dry friction for large avalanches is µ = 0.155, and the dynamic friction ξ > 1000;
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• The SH model is a granular flow, depth-integrated model for dense-snow avalanches under
the continuum mechanical approach.

• The entrainment rate in the dense-snow avalanche can be defined as

Se =
τb

rb
∥ u ∥ .

A common assumption is that mass detaches from the top of the dense layer at the same
rate that mass is entrained in the bottom.

• The mixture model provides a way to model the powder-snow avalanche as a single-phase
flow, although the air phase is also considered. The model uses the concentration of
volumes αs and αa to represent the simultaneous occupancy of the snow and air phases in
space. However, the equations are written only in terms of αs.

• Under the mixture model, the mixture quantities are defined in terms of the constituent
occupancies, α⋆ ∈ [0,1], such as the mixture density:

ρ = ρsαs +ρaαa.

• Although both phases can be simplified as incompressible fluids, the mixture of both fluids
is compressible.
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CHAPTER

4
SIMULATION METHOD

This chapter delves into the details of the overall method. Here, a set of separate numerical
methods simulate a mixed-type powder-snow avalanche. In particular, the workflow completely
decouples the powder-snow layer from the dense-snow layer. Both layers are treated as separate
simulations that communicate with each other numerically.

Refer to Appendix B on page 205 for a brief introduction to the numerical methods used
in this chapter, such as the Finite Volume Method (FVM), and Appendix C on page 223 for
a description of the software package OpenFOAM, the framework utilized to implement the
models.

The first section gives a complete overview of the method, followed by section 4.2 on
page 110 and section 4.3 on page 116, discussing the details of each separate method for the
Dense-Snow Layer (DSL) and Powder-Snow Layer (PSL) simulations, respectively. The chapter
ends with a list of remarks in section 4.4 on page 129.

4.1 Method Pipeline

As described in section 2.2 on page 52, the powder-snow avalanche consists of four
main layers, from bottom to top: a ground layer representing the static snow cover, the DSL, a
transition layer, and the PSL. Like Sampl and Granig (2009), this method takes the following
assumptions:

Assumption 1. The layers’ physical characteristics are sufficiently different to justify a different

set of equations to explain their respective motion.

Assumption 2. The transition layer is considered a rough wall that coincides with the surface of

the DSL. The wall moves at the same speed as the DSL.
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The first assumption is more of a necessity in front of the complexity of the whole
phenomenon; it allows the application of more appropriate models for each type of flow. On
the other hand, Assumption 2 enormously simplifies the method by removing the explicit
representation of the transition layer, which is particularly challenging to model. In practice,
the method simulates only the DSL and PSL flows, as boundary conditions for both numerical
models could implicitly represent the transition layer. However, a third assumption further
simplifies the overall setting:

Assumption 3. Neither the turbulent air nor the deposition processes of the PSL are significant

enough to have any effect on the motion or mass of the DSL. Thefore the role of the PSL in the

DSL is negligible.

The direct consequence of Assumption 3 is that the system becomes a one-way coupling
system of simulations, meaning that the resulting data of the first simulation serves as input for
the second one. Schematically, the main algorithm performs both layer simulations in sequence
and glues them together by converting the DSL output quantities into boundary conditions for
the PSL equations. Figure 34 depicts the final decomposition of the powder-snow avalanche after
the abovementioned assumptions.

Figure 34 – The simulation method considers the following decomposition of the powder-snow avalanche.
The method simulates only the DSL and the PSL flows. The transition layer is an interface
that translates to boundary conditions for the PSL. The snow cover is static and serves as the
source of mass for the upper layers.

Source: Elaborated by the author.

The pipeline consists of three main steps that conduct the numerical information transport
from the lower to the upper layers. The middle step converts the output data from the DSL flow
simulation into input quantities for the PSL flow simulation. The details will become clear in the
next sections. Figure 35 represents the following sequential steps:
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• Step 1: Since it is a one-way coupling system, the full simulation of the DSL flow can be
executed without any dependency. The two essential resulting quantities are the height h

and the velocity u of the DSL. The velocity vector is parallel to the terrain surface. The
final height of the snow cover h′, after its erosion, is also passed forward.

• Step 2: The resulting data from the previous step are converted into boundary conditions
for the bottom faces of the PSL flow. The output is the amount of injected mass into
the powder cloud and the velocity of the injection uin j. The injection velocity vector is
perpendicular to the terrain surface. The computation of the injection quantities requires
an extra field representing the distance to the front region of the DSL.

• Step 3: The final step simulates the PSL flow. The injection information computed in step

2 generates mass for the cloud, and the governing equations take care of the motion. The
final data is a density field representing the occupancy of snow powder in the simulation
domain.

Figure 35 – The visual representation of the three steps described in the text. The output data from the
DSL flow simulation representing tangential velocity and DSL height is converted into an
amount of injected mass with parallel velocity. The injection intensity depends on the distance
to the front of the DSL flow. The final result is a volumetric field representing the powder
snow cloud.

Source: Elaborated by the author.

This chapter focuses only on the mathematical models that describe the DSL and the
PSL. However, the simulations run over discrete meshes representing the numerical grid for the
FVM. The details regarding the generation of the numerical grids from topographical data, the
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computation of the DSL front distance field, and other computational aspects are discussed in
Chapter 5 on page 131.

4.2 Dense-Snow Layer Model

This section describes a method for simulating the dense flow avalanche corresponding
to the DSL in the powder-snow avalanche. The core assumption is that the DSL behaves as
a granular material that undergoes high deformation. The steep slope of the terrain tests the
bed friction against the force of gravity. The internal friction also determines the motion of the
granular flow by generating heat and resisting deformations.

The method resorts to the successful family of Saint-Venant Equations derived models
to reduce the problem to two dimensions, particularly the well-known Savage-Hutter model
(SAVAGE; HUTTER, 1991). As introduced in subsubsection 3.3.5.1 of Chapter 3, the SH
extends the Shallow Waters Equations (SWE) by introducing a Coulomb-like dry friction for
bed friction and a Mohr-Coulomb yield criterion to handle the internal friction. Additionally,
the SH tackles the inherent limitation of the SWE for steep slopes by describing its equations
with local curvilinear coordinates (x′,y′,z′) – see Figure 36. In the curvilinear setting, the vector
quantity v is described as v′ = (v′x,v

′
y)

T , where the prime superscript (⋆)′ denotes the curvilinear
coordinates1.

Figure 36 – The SH model describes the equations in the local curvilinear coordinates (x′,y′,z′). The
directions of x′ and y′ are parallel to the terrain, where x′ follows the slope, and the direction
of z′ points to the normal direction n. The height h′ represents the height of the avalanche in
the normal direction. The model takes the averages ū of the vertical variation of the velocity
u.

Source: Elaborated by the author.

1 Note that the vectors for the following equations are two-dimensional vectors since the SWE removes
one dimension by averaging the values along the vertical direction.
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For a simple ramp, as shown in Figure 36, curved only in the x′ direction, Koch, Greve
and Hutter (1994) applies the SH equations as the following:

∂h′

∂ t
+∇

′ · (h′ū′) = 0, (4.1)

∂ (h′ū′)
∂ t

+∇
′ · (h′ū′⊗ ū′) =

τ ′b
ρ
+g′xyh′− k

2ρ
∇
′(h′pb), (4.2)

ū(x) =
1

h′(x)

∫ h′(x)

0
u(x−n(x)z′)dz′ [m · s−1], (4.3)

where h′ is the height of the flow normal to the surface (in the direction of z′), ū′ = (ūx, ūy)
T is

the average velocity in the z′ direction, ∇′ = ( ∂

∂x′ ,
∂

∂y′ )
T is the spatial derivatives in curvilinear

coordinates, τ ′b is the basal friction term (based on the Coulomb friction), k is the curvature of
the x′ curved axis, g′xy is the tangential components of the gravitational acceleration, and pb is
the basal pressure defined as

pb = ρh′g′z +ρh′kū′2x [kg ·m−1s−2], (4.4)

where the first term represents the gravitational influence and the second term relates to the
centrifugal force.

For more complex terrains, the computation of the curvature k is challenging. Alter-
natively, Rauter and Tukovi (2018) offers an approach based on thin liquid film methods that
solves Surface PDEs (SPDEs)2 and can handle mildly curved terrains. In contrast to the SH, their
method describes the equations in Cartesian coordinates and relates the vertical component of the
velocity to the basal pressure. The solution splits the momentum equation into surface-tangential

and surface-normal parts:
∂h′

∂ t
+∇ · (h′ū) = 0 [m · s−1], (4.5)

∂ (h′ū)
∂ t

+∇S · (h′ū⊗ ū) =−τb

ρ
+h′gS−

1
2ρ

∇S(h′pb) [m2 · s−2], (4.6)

∇n · (h′ū⊗ ū) = h′gn−
1

2ρ
∇n(h′pb)−

1
ρ

npb [m2 · s−2], (4.7)

where, for a surface with normal vector n, the surface-tangential gradient operator ∇S and the
surface-normal gradient operator ∇n are defined as

∇n = (n⊗n) ·∇,

∇S = (I−n⊗n) ·∇.
(4.8)

The respective gravitational components, gS and gn, are defined in the same way. Note that
Equation 4.6 and Equation 4.7 are very similar, distinguished only by the strictly normal and
tangential terms. Essentially, both equations represent a decomposition of Equation 4.2 in a
2 See Deckelnick, Dziuk and Elliott (2005).



112 Chapter 4. Simulation Method

velocity equation and a basal pressure equation3, respectively. The boundary condition ū ·n = 0
ensures that the fluid motion is tangential to the surface and helps to solve Equation 4.7. Therefore,
the solution for the basal pressure pb can solve the velocity field ū.

In order to account for entrainment processes, Rauter et al. (2018) extends the model
above with the entrainment model provided by Fischer et al. (2015). The extension modifies the
mass conservation equation Equation 4.5 to include the entrainment rate qe defined as

qe =


τb·ū
eb

, h′c > 0,

0, h′c = 0
[kg ·m−2 · s−1], (4.9)

where eb[m2 · s−2] is the specific erosion energy and h′c is the height snow cover encountered by
the avalanche, defined as

h′c(z) = (H ′c(z0)+
∂H ′c
∂ z

(z− z0))cosΘ [m], (4.10)

where z[m] is the mountain elevation and cosΘ = g ·n. The other terms are user parameters,
z0[m] is the elevation reference, H ′c(z0) is the base value, and ∂H ′c

∂ z is the growth rate. Equation 4.5
then becomes

∂h′

∂ t
+∇ · (h′ū) = qe

ρ
[m · s−1], (4.11)

and the consumption of the snow cover due to entrainment over time is

∂H ′c
∂ t

=−qe

ρ
[m · s−1]. (4.12)

Finally, the basal friction τb follows the Voellmy friction model, see subsection 3.3.3 of Chapter 3,
and is defined as

τb = µ pb
ū

|ū|+u0
+

ρg
ξ
|ū|ū [kg ·m−1 · s−2], (4.13)

where µ[·] and ξ [m · s−2] are constant values, and u0[m · s−1] is a regularization value to avoid
the division by near zero velocities.

4.2.1 Numerical Model

This section describes the method employed by Rauter et al. (2018) to solve the governing
equations described in the previous section. The numerical method, described in section B.2 on
page 220, is called the Finite Area Method (FAM) and is a specialization of the FVM for curved
surfaces. The FAM discretizes the equations over the decomposition of the surface domain into
cells called finite areas, flat polygonal areas bounded by straight edges — left side of Figure 37.
Moreover, the FAM is constructed to solve SPDEs by discretizing the differential operators in
the tangential and normal directions, fitting Equation 4.6 and Equation 4.7, respectively.
3 The basal pressure equation relates to Equation 4.4 but does not require the calculation of the curvature

the surface curvature k.
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Figure 37 – The FAM solves PDEs on curved surface domains by discretizing the domain into a surface
mesh. Each cell The discretization process uses the fluxes passing through the edges of each
cell. The flux in an edge is defined by (hu)ec ·Le, where Le = |Le|me is the edge length vector
pointing outward the cell, and h is the DSL height transported by the velocity u. Note that me

is not necessarily orthogonal to the surface normal n at the cell center.

Source: Elaborated by the author.

The equations are solved sequentially by an iterative method, represented by Source
code 1, that repeats the sequence until convergence is achieved. The sequence is composed of
three steps:

1. Use Equation 4.7 to compute a new value for the basal pressure pb;

2. Use Equation 4.6 to compute a new value for the velocity field ū;

3. Use the new velocity ū to compute a new value of h′ with Equation 4.11.

Source code 1 – DSL Algorithm.

1: u = u_0; pb = pb_0; h = h_0;

2: for(t = t_0; t < t_final ; t += dt) {

3: while ( residual > threshold && ) {

4: pb = computePb (u, h, pb);

5: u = computeU (pb , u, h);

6: h = computeH (u, pb);

7: }

8: }

The following details consider a finite area cell C, with area CA and center point Cc. The
cell is bounded by a set of edges ei ∈ E that may be shared with neighboring cells Ni. The flux
of any rank tensor field Ψ through each edge ei is defined by (Ψ)eci ∗Lei, where Lei is the edge
length vector pointing outwards the cell, and ∗ is an appropriate product operation.
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In the following discretization equations, implicit4 terms are terms localized in the center
points, (⋆)Cc , associated with the system matrix entries. Explicit terms are all the remaining
quantities that happen to be on the right hand side of the equations. The superscript (⋆)o denotes
the current known value of ⋆ in the current time step. The steps of the algorithm above are:

• pb← computePb(ūo, ho, po
b)

The new value of pb is computed explicitly from Equation 4.7:

pb =−ρ(∇n · (hoūo⊗ ūo)) ·n+(ρhogn)Cc ·n−
1
2
(∇n(ho po

b)) ·n

where

∇n · (hoūo⊗ ūo)≈ (n⊗n) · ∑
ei∈E

(hoūo⊗ ūo)eci ·Lei,

∇n(ho po
b)≈ (n⊗n) · ∑

ei∈E
(ho po

b)eciLei.
(4.14)

• ū← computeU(ūo, ho, po
b)

The new value for the velocity field ū comes from the solution of the system

Aū = b (4.15)

constructed from the discretization of Equation 4.6

∂ (hoū)
∂ t
1

+∇S · (hoūo⊗ ū)
2

=−τb

ρ

3

+hogS

4

− 1
2ρ

∇S(ho po
b)

5

,

where each numbered term translates into the system as:

1.
∂ (hoū)

∂ t

The transient term is descritized by the second-order implicit Euler:

CA

2∆t

(
3(hoū)−4(hū)n−1 +(hū)n−2

)
Cc
, (4.16)

where the superscripts (⋆)n−1 and (⋆)n−2 denote known values from previous time
steps.

2.
∇S · (hoūo⊗ ū)

The convective term is discretized via the upwind scheme5:

(I−n⊗n) · ∑
fi∈S

Φeciūeci, (4.17)

4 See implicit and explicit term definitions in section C.2.
5 See advection schemes in subsection B.1.5 on page 216.
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where

Φeci = (hū)o
eci
·Lei,

ūeci =

(ū)Cc , Φeci ≥ 0,

(ū)Nci , Φeci < 0.

(4.18)

3.

−τb

ρ

The basal friction term is given by Equation 4.13:

τb = µ po
b

ū
|ūo|+u0

+
ρg
ξ
|ūo|ū,

so the term is implicitly solved by the system as

CA

((
µ pb

1
|ū|+u0

+
ρg
ξ
|ū|
)o

ū
)

Cc
. (4.19)

4.

hogS

The source term is directly translated into the system as

(I−n⊗n) · (hog)CA. (4.20)

5.
1

2ρ
∇S(ho po

b)

The last term is also explicitly solved by the system as

(I−n⊗n) · 1
2ρ

∑
ei∈E

(ho po
b)eciLei. (4.21)

• h← computeH(ūo, ho, po
b)

The DSL height is given by the numerical system

Ah[h] = bh, (4.22)

constructed from the discretization of Equation 4.11:

∂h
∂ t
1

+∇ · (hūo)

2

=
qe

ρ

3

,

where each numbered term translates into the system as:
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1.
∂h
∂ t

The transient term is descritized by the second-order implicit Euler:

CA

2∆t

(
3h−4hn−1 +hn−2

)
Cc
. (4.23)

2.
∇ · (hūo)

The convective term is discretized via the upwind scheme:

∑
fi∈S

Φeciheci, (4.24)

where

Φeci = (ū)o
eci
·Lei,

heci =

(h)Cc , Φeci ≥ 0,

(h)Nci , Φeci < 0.

(4.25)

3.
qe

ρ

The right-hand side term accounts for snow entrainment into the DSL and uses
Equation 4.9. In the presence of a snow cover, qe is defined as:

qe =
(

τb · ū
eb

)o
,

and the complete term is explicitly solved as(
τb · ū
ρeb

)o
CA. (4.26)

4.3 Powder-Snow Layer Model
The miscible nature of the turbulent movement of snow and air in the powder-snow layer

appeals to mixture models. Therefore, we consider the family o models originated from the
Continuum Mixture Theory (CMT) — see section A.1 on page 203. In particular, our model
contemplates the two main mixture constituents, Cs, and Ca, representing respectively snow6 and
air phases7. Therefore, the terms in the following equations indexed with the subscript (⋆)s refer
to field quantities of snow, and those indexed with the subscript (⋆)a refer to field quantities of
air. The model then combines snow and air property quantities to describe the final mixture.
6 Recall that the snow phase consists of airborne particles of ice.
7 The terms phase and constituent are interchangeable throughout the text.
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Moreover, allied to the superposition assumption of the CMT, the mixture is characterized
by the fraction of volume α⋆ ∈ [0,1] occupied by the constituent C⋆ for any given volume
occupied by the mixture. The mixture density ρ , for example, is defined by

ρ = αsρs +αaρa, αs +αa = 1. (4.27)

The CMT conveniently introduces a mean velocity u for the mixture, interpreted as the
velocity of the center of mass of the constituents. Thus, we can simplify our model using the
mean velocity instead of handling us and ua explicitly. Additionally assuming incompressibility
for both phases and the mixture, the continuity equation is

∇ ·u = 0, (4.28)

imposing ρs and ρa constant densities. The momentum equation for the mean velocity can be
derived directly from the linear momentum balance law:

∂ρu
∂ t

+∇ · (ρu⊗u) = ∇ ·S+ρg, (4.29)

where S is the Cauchy stress field and g the gravitational acceleration. The Cauchy stress field is
composed by a reactive part Sr and an active part Sa:

S = Sr +Sa. (4.30)

For incompressible fluids, the reactive stress field is spherical and its multiplicative term p is
interpreted as the pressure:

Sr =−pI. (4.31)

The reactive stress field Sr would be sufficient to model ideal fluids. However in the case of
Newtonian fluids, the Cauchy stress field carries the active term Sa, defined as8

Sa = S− 1
3

tr(S)I. (4.32)

The active term Sa is related to the shear-rate stresses and is represented by the shear-rate tensor
τ , also called viscous stress tensor or deformation-rate tensor, given as

Sa = τ = 2µD− 2
3

µtr(D)I, (4.33)

where D = 1
2(∇⊗u+(∇⊗u)T ) is the strain-rate tensor and µ is the mixture viscosity9

µ = αsµs +αaµa. (4.34)
8 The decomposition of S splits a matrix S into a hydrostatic SH part and a deviatoric SD part, S= SH +SD.

The hydrostatic part is defined as SH = 1
3 tr(S)I, which is particularly interpreted as the negative

pressure −pI. The deviatoric part is simply given by SD = S−SH .
9 If µ = 0 and ρ = ρ0 constant, the system is reduced to the known Euler equations: ∇ ·u = 0 and

ρ0
∂v
∂ t +(∇ ·u)u =−∇p+ρ0g.
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The development of the trace operator in Equation 4.33 yields

tr(D) = tr
(1

2
(∇⊗u+(∇⊗u)T )

)
= ∇ ·u,

(4.35)

therefore the tensor τ can be written as

τ = 2µD− 2
3

µ(∇ ·u)I. (4.36)

Note, however, that by the continuity equation Equation 4.28, ∇ ·u = 0, the equation above
reduces to

τ = 2µD. (4.37)

The expansion of Equation 4.30 in Equation 4.29 results into the momentum equation
found in the Navier-Stokes equations

∂ρu
∂ t

+∇ · (ρu⊗u) =−∇p+∇ · τ +ρg. (4.38)

For numerical purposes, it is also convenient to use a change of variable for the pressure
term. The pressure field is modified to account for the hydrostatic pressure prgh and is defined as:

prgh = p−ρg ·h, (4.39)

where h is the position vector read as the height. The substitution of p by prgh proceeds by
applying the gradient on both sides of Equation 4.39:

∇prgh = ∇p−∇(ρ(g ·h))

−∇p =−∇prgh−ρg ·∇⊗h−h ·∇(ρg)

−∇p =−∇prgh−ρg · Iz−g ·h∇ρ−�����:0
ρh ·∇g

−∇p =−∇prgh−ρg−g ·h∇p

(4.40)

where the term ∇⊗h reduces to the tensor Iz with diagonal (0,0,1)T and null non-diagonal
elements. The final linear momentum equation is written as

∂ρu
∂ t

+∇ · (ρu⊗u) =−∇prgh−g ·h∇ρ +∇ · τ. (4.41)

The remaining equations describe the conservation of mass and use the concentration
of volume αs instead of ρ . Using α in the equation requires only one set of equations since
αa = 1−αs (Equation 4.27). Notice that, in principle, the transport equation for αs would be

∂αs

∂ t
+∇ · (uαs) = 0, (4.42)

which conserves αs along the motion. However, the turbulent motion in the PSL causes the
mixing of both phases and therefore Equation 4.42 gets a source term on the right-hand side. The
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additional term takes into account the kinetic energy, produced by turbulence, that composes the
stress tensor for the field αs and models the mixing effect of the turbulence:

∂αs

∂ t
+∇ · (uαs) = ∇ ·

((
DAB +

νt

Sc

)
∇αs

)
. (4.43)

The constant Sc is called the Schmidt number and is the ratio of the momentum diffusivity to
mass diffusivity10. νt is the turbulent eddy viscosity, which comes from the transfer of energy
due to moving eddies produced by turbulence. The molecular diffusivity, Dab, describes the
velocity of diffusion of molecules from the snow phase into the air phase.

A further simplification takes the turbulent energy out of the equation, νt = 0, yielding
the final form

∂αs

∂ t
+∇ · (uαs) = ∇ ·

(
DAB∇αs

)
. (4.44)

4.3.1 Transition Layer Model

The previous section detailed the model equations for linear momentum and mass
transport. The set of equations describes the evolution of the powder-snow cloud over time due
to gravity. The gravity force causes the acceleration of heavy snow particles in regions where
the density difference is high. Besides the gravitational acceleration, mass transport manifests
through molecular diffusion between both phases. However, none of the terms in the equations
consider the mass exchange between the powder-snow cloud and the sources of snow particles.
Moreover, the volume of the cloud also varies due to air drag and air intake, which are also not
accounted for by the equations.

As described in previous chapters, the powder-snow layer gains mass from the processes
in the interface layer between the DSL and the PSL, called the transition layer. This section
explores a couple of models for the transition layer and considers the eruption entrainment type,
described in section 2.2, as the principal source of mass and momentum injections in the PSL.

Here, boundary conditions in the PSL model system implicitly represent the transition
layer. In this sense, a Dirichlet boundary condition for mass and velocity imposes snow injection
at the bottom region of the PSL. Since the equations describe the powder-snow mass in terms of
concentration of volume αs ∈ [0,1], the transition layer model must define an injected volume
concentration αin j driven by an injection velocity uin j.

Consider a volume V localized at the bottom region of the PSL. During the eruption
entrainment process, the total injection flux Fin j passing through the bottom surface area A is
given by:

Fin j = Φin j ·Sf = ρsuin j · (Anb) [kg · s−1], (4.45)

10 Physically, the Schmidt number has a direct relation to the flow strength. The increase in Sc means
higher momentum diffusivity leading to an increase in the flow strength.
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where Φin j = ρsuin j is the mass flux and Sf = Anb is the surface area vector pointing at the
normal boundary vector nb outwards the volume. Note that writing the mass in the equation
above by terms of concentration of volume inevitably requires the volume V . In the following,
the superscript (⋆)v will associate ⋆ to the volume V , such as in the equation of the total
powder-snow mass mv inside the volume V :

mv = α
v
s ρsV. (4.46)

Figure 38 – The injection of powder snow happens principally through the eruption entrainment process.
For a control volume V , represented in the figure by the square/cube, in the bottom region of
the PSL, mass flows upwards through the bottom surface area A. The volume concentration
of the powder snow inside V increases with the mass inflow.

Source: Elaborated by the author.

Take the injection example in Figure 38, representing an increase of 0.6 in the value of
αv

s over time ∆t = tn+1− tn. From Equation 4.45, the total amount of injected mass mv
in j in this

case is

mv
in j = α

v
in jρsV = ∆tFin j = ∆t(ρsuin j) · (Anb), (4.47)

which implies

α
v
in j =

A∆t
V

uin j ·nb. (4.48)

Over the years, researchers proposed models to compute mv
in j and uin j. In particular,

Carroll, Louge and Turnbull (2013) defines the mass flow rate in the two-dimensional eruption
entrainment process as

Fin j = ρsc(λhsc cosθW )u f ront , (4.49)

where ρsc is the snow cover density, hsc is the snow cover depth, λ ∈ [0,1] is the fraction of the
snow cover layer entrained into the PSL, θ is the slope, W is the section width of the front region
which the eruption flows through, and u f ront is the front velocity.
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Bartelt et al. (2016) breaks down the formation of the powder snow cloud into two
processes: air intake and ice-dust blow-out. Both processes happen simultaneously but at different
locations of the avalanche. As particles in the DSL collide with the ground, the dispersive

pressure causes the DSL to expand, which causes air intake. Then, the downward motion of
heavy particles displaces the enclosed air, causing the compression of the DSL. Therefore, the
velocity of expansion/compression wh causes the variation in the DSL height hdsl:

∂hdsl

∂ t
+∇ · (hdsludsl) = wh [m · s−1], (4.50)

where udsl is the DSL two-dimensional velocity parallel to the terrain. The variation rate of
the DSL height, wh, is a one-dimensional velocity perpendicular to the terrain and has its own
formulation; wh results from the mechanical energy caused by the sharing in the DSL body,
leading to its variation in height. During the blow-out, i.e. the compression of the DSL, the mass
flow into the PSL is defined as

Fin j =

(ρuin j) · (Anb), wh < 0,

0, otherwise,

uin j ·nb = 2wh.

(4.51)

Recently, Ivanova et al. (2021) proposed a depth-averaged model with turbulence applied
to powder–snow avalanches simulations. The model splits the velocity along the depth u =U +u′

into mean velocity U and fluctuation velocity u′ components. The mass balance for the depth-
averaged model due to entrainment is

∂ ĥpsl

∂ t
+

∂ (ĥpslU)

∂x
= Se +Sa, (4.52)

where ĥpsl is the cloud height with entrainment (the model distinguishes the cloud height without
air entrainment hpsl , and with air entrainment ĥpsl), Se and Sa are the snow and air entrainment
souce terms, respectively. The air entrainment, caused by turbulence, is described as

Sa =

(αUU +αT
√
⟨u′2⟩) ρ̂

ρ
, ρ̂ > 2ρa,U > 0

0, otherwise,
(4.53)

where ⟨u′2⟩= 1
h
∫ h

0 u
′2dz is the variance of velocity fluctuations representing the turbulent kinetic

energy, αU ∈ [0,1] is the steady entrainment coefficient, αT ∈ [0,1] is the turbulent entrainment
coefficient, and ρ̂ is the mean density of the cloud and follows the relationship ρh = ρ̂ ĥ. The
snow entrainment follows an alternative approach by defining an oscillatory injection velocity
Ue(x, t) based on a Gaussian pulse of half-length L0 and amplitude A0,

Ue = A0 exp
[
−(x− x0−S0t)2

2 ·L2
0

]
, (4.54)
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where S0 is the propagation velocity of the pulse and x0 is the starting position of core at time
t = 0. The suggested values for the densities are ρ = 7 kg/m3 and ρ0 = 10 kg/m3. The final
snow entrainment term is given by

Se =
ρ

ρ0
Ue. (4.55)

The methods described above are only a few examples of a diversity of entrainment
models proposed by researchers throughout the years — see subsection 3.4.4 on page 98. The
remaining section proposes the method adopted in this project, supported by the concepts
presented by the methods listed above.

Injection Velocity (uin j)

The injection velocity is responsible for an increase in the momentum of the PSL by
injecting kinetic energy into the system. The acceleration of the fluid at the front has numerous
sources, such as the displacement of air caused by the ejection of snow mass from the ground
(snow blow-out) and air intake. These factors produce the violent suspension process that forms
the snow cloud.

The ejection of snow mass upwards is proportional to the velocity of change in the DSL’s
height, 2wh, listed in Equation 4.51. The acceleration caused by the entrainment air follows the
front velocity u f ront . Therefore, the injection velocity is the combination of both:

uin j = (2wh +ωu ∥ u f ront ∥)(−nb), (4.56)

where u f ront is the front velocity vector. Note that uin j has the same direction of (−nb)
11, parallel

to the normal of the terrain.

The term ωu accounts for air intake and turbulent motion from the intermittent region.
Due to the turbulent nature of the PSL, this factor is generalized as a random perturbation:

ωu ≈ ωs +ωt , (4.57)

where ωs is a steady factor and ωt is a perturbation factor caused by turbulence.

As later detailed in subsection 5.1.3, ωu is further reduced into a noise function. Note
also that the boundary conditions for the velocity field must include the DSL motion, so the
velocity at the boundary is defined as

(u)b = uin j +udsl. (4.58)

Concentration of Volume Injection (αin j)

As mentioned earlier, the concentration of volume αin j builds from the volume and
the total amount of mass entrained at a given time. Analogous to Bartelt’s wh term in Equa-
tion 4.50, the variation rate in the DSL’s height hdsl can be extracted from the right-hand side of
11 Recall that nb points outwards the PSL volume, i.e. downwards into the terrain.
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Equation 4.11
∂h′

∂ t
+∇ · (h′ū) = qe

ρ

of the DSL model presented in section 4.2. Let Qe represent such term, respective to wh, so

Qe =
qe

ρdsl
. (4.59)

The total mass me entrained over the period ∆t through an area A is given by:

me = QeρdslA∆t, (4.60)

which is converted for the correspondent volume V as a volume concentration as

α
v
in j =

me

Mv , (4.61)

where Mv is total mass capacity of the PSL volume V defined as

Mv = ρpslV. (4.62)

4.3.2 Numerical Model

This section describes the numerical treatment of the core system of the governing
equations described in section 4.3. The finite volume method, introduced in the appendix
section B.1 on page 205, solves the equations by discretizing them over the decomposition
of the physical domain into cells called finite volumes — see Figure 39. The FVM integrates
the equations for each cell volume and uses the cell boundary fluxes to discretize the volume
integrals12. A detailed description of the discretization process is presented in Appendix B,
section B.1 on page 205. Therefore, this section only briefly and directly discusses the numerical
model used to solve the equations.

Each cell in the grid spans an equation that composes the final system of numerical
equations. For a given cell C with center Cc, the flux of a quantity φ passing through the cell face
fi is computed in the face center fci and is represented by (φ ·u) fci ·Sfi, where Sfi is the face area
vector pointing outwards the cell — see Figure 39. The following equations are written in terms
of C, where the subscripts (⋆)Cc and (⋆) fci represent quantities evaluated at the cell center Cc

and the face center fci, respectively.

The iterative numerical method uses the PIMPLE algorithm, see section C.3 on page 227,
which loops through a prediction-correction pair of phases that build up the solution for each time
step in the simulation. In this case, the PIMPLE algorithm is adapted to include Equation 4.43,
the equation for αs. Source code 2 describes the final algorithm of the PSL model, and the
following list details the functions in the code. In the equations, the superscript (⋆)o refers to
values from previous time steps or loop iterations.
12 See the Divergence theorem in subsection B.1.1 on page 207.
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Figure 39 – The FMV splits the physical domain into a volumetric mesh where the equations are dis-
cretized in each grid cell. The discretization process uses the fluxes passing through the faces
of each cell. The flux in a face is defined by (φu) fc · Sf, where Sf is the face area vector
pointing outward the cell, and φ is the quantity being transported by the velocity u.

Source: Elaborated by the author.

Source code 2 – PSL Algorithm.

1: u = u_0; p = p_0; rho = rho_0;

2: for(t = t_0; t < t_final ; t += dt) {

3: // solve alpha equation and update rho

4: rho = updateMixtureDensity (u);

5: while ( PIMPLE .loop ()) {

6: u_star = predictMomentum (rho , u, p);

7: while ( PIMPLE . correct ()) {

8: p = correct (u_star , p);

9: }

10: }

11: }

• updateMixtureDensity(uo, αo
s )

The first action in every new time step iteration, right before the PIMPLE loop, is the
computation of a new value of ρ . The mixture density ρ , recalling Equation 4.27,

ρ = αsρs +αaρa,

is required by the momentum equation, Equation 4.41, and is computed through αs, solved
by Equation 4.44:

∂αs

∂ t
+∇ · (uo

αs) = ∇ ·

(
DAB∇αs

)
.
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Here, a sequential operator splitting similar to Greenshields et al. (2010) can be used13.
First, just the inviscid portion of the equation is explicitly solved for α I

s (with the superscript
(⋆)I referring to as the inviscid solution), given by

∂α I
s

∂ t
+∇ · (uo

α
o
s )

advection

= 0. (4.63)

In order to guarantee boundedness in the solution of the advective term marked above,
advection is solved explicitly by a flux-correction transport method14, which provides a
bounded value for the fluxes (αo

s uo) f ci. The resulting α I
s is assigned to αs and a second

equation containing the diffusion contribution is built:

∂αs

∂ t
1

− ∂α I
s

∂ t
2

= ∇ ·

(
DAB∇αs

)
3

. (4.64)

The equation above is solved by the numerical system

Aα [αs] = bα , (4.65)

where each numbered term in Equation 4.64 is translated into the system by the corre-
sponding discretization:

1.
∂αs

∂ t

The transient term is descritized by the first-order implicit Euler:

CV

∆t
(αs−α

o
s )Cc , (4.66)

where CV is the volume of the cell. Here and in the following equations, the coef-
ficients multiplying αs are entries in the matrix Aα

15, and coefficients multiplying
known values (⋆)o are components of bα .

2.
∂α I

s
∂ t

The explicit transient term is descritized by the first-order implicit Euler and con-
tributes only to the right-hand side:

CV

∆t
(α I

s −α
o
s )Cc. (4.67)

13 The idea is to split the equation into two equations: the inviscid equation, that accounts only for inviscid
contributions and the diffusion correction equation that includes the diffusion term and the rest.

14 See MULES in Appendix C, section C.2
15 Terms related to (⋆)Cc correspond to diagonal entries of Aα , while the remaining correspond to

off-diagonal entries.
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3.

∇ ·

(
DAB∇αs

)
Considering the coefficients above constant, the laplacian term follows the same
procedure detailed in subsection B.1.6 on page 218 in Appendix B:

Γ△αs ≈ ∑
fi∈S

(∇niαs) fciS f i

≈ aC(αs)Cc + ∑
fi∈S

aNi(αs)Nci +bC,

aC = Γ ∑
fi∈S
̸⊥corri S f i,

aNi =−Γ ̸⊥corri S f i,

bC = Γ ∑
fi∈S

(∇α
o
s ) fci · (ni− ̸⊥corri di)S f i

Γ = DAB,

(4.68)

where di = Nci−Cc, and ̸⊥corri is a non-orthogonal correction factor as described in
subsection B.1.4 on Appendix B.

The resulting value of αs provides the new value for ρ16.

• u⋆← predictMomentum(ρ,uo, po)

In the momentum prediction phase, an intermediary velocity field u⋆ is computed from
the new value of ρ and previous values of velocity and pressure (ρ,uo, po). This field is
the solution of the the numerical system

Au⋆ = b, (4.69)

built from the FVM discretization of the momentum equation, Equation 4.41:

∂ρou⋆

∂ t
1

+∇ · (ρouo⊗u⋆)

2

=−∇po
rgh−g ·h∇ρ

o

3

+∇ · τ⋆
4

, (4.70)

where each term in the equation translates as:

1.
∂ρou⋆

∂ t

The transient term is descritized by the first-order implicit Euler:

CV

∆t
(ρo)Ccu

⋆ =
CV

∆t
(ρouo)Cc . (4.71)

16 Recall αa = 1−αs, therefore ρ = αsρs +(1−αs)ρa.
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2.
∇ · (ρouo⊗u⋆)

The convective term follows the usual choice for large eddy simulations, the linear
scheme, sacrificing boundedness for accuracy:

∑
fi∈S

(wiΦ
o) fci⊗ (u⋆)Cc + ∑

fi∈S
(−wiΦ

o +Φ
o) fci⊗ (u⋆)Nci, (4.72)

where Φo = ρouo is the mass flux, and wi is the interpolation weight based on the
cell center to face centers distances, dC = fci−Cc and dNi = Nci− fci:

wi =
n ·dNi

n · (dC +dNi)
. (4.73)

3.
−∇po

rgh−g ·h∇ρ
o

The scalar gradient discretization for the source terms produce the following contri-
butions to the right hand side of the system:

− ∑
fi∈S

(po
rgh) fciSfi−g ·h ∑

fi∈S
(ρo) fciSfi, (4.74)

where h =Cc.

4.
∇ · τ⋆

The expansion of the tensor term is17:

∇ · τ⋆ = µ△u⋆+µ∇ ·Devo,

Devo = (∇⊗uo)T − 2
3

tr((∇⊗uo)T )I,
(4.75)

where the explicit terms are discretized as

(∇⊗uo)Cc ≈
1

CV
∑
fi∈S

(uo) fci⊗Sfi,

(∇ ·Devo)Cc ≈
1

CV
∑
fi∈S

(Devo) fci ·Sfi.

(4.76)

17 Recalling the definition of τ by Equation 4.33, and noting that for any matrix M

tr(
1
2
(M+MT )) = tr(M) = tr(MT ),

the term expands as:

∇ · τ = ∇ · (2µD
expand

−2
3

µ tr(D)

expand

I)

= ∇ · (µ∇⊗u+µ(∇⊗u)T −2
3

µ tr((∇⊗u)T )I)

= µ△u+µ∇ · ((∇⊗u)T − 2
3

tr((∇⊗u)T )I)
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Note that assuming the mixture incompressible, recalling Equation 4.37, the devia-
toric term becomes

Devo = (∇⊗uo)T .

The laplacian term µ△u⋆ follows the same procedure detailed in subsection B.1.6
on page 218 in Appendix B:

µ△u⋆ ≈ ∑
fi∈S

(∇ni⊗u⋆) fciS f i

≈ aC(u⋆)Cc + ∑
fi∈S

aNi(u
⋆)Ni +bC,

aC = µ ∑
fi∈S
̸⊥corri S f i,

aNi =−µ ̸⊥corri S f i,

bC = µ ∑
fi∈S

(∇⊗uo) fci · (ni− ̸⊥corri di)S f i.

(4.77)

The final form of the discretization in the system becomes:

−aC(u⋆)Cc− ∑
fi∈S

aNi(u
⋆)Ni = bC +(∇ ·Devo)Cc . (4.78)

• correct(u⋆, po
rgh)

The momentum prediction step provides an estimate for the velocity u⋆ by solving the
system

Au⋆ = b.

However, the system above does not include the continuity equation, ∇ · u = 0, and
therefore, u⋆ is not a divergence-free field. Also, the system does not compute the coupled
pressure field prgh; instead, it uses a previous pressure field po

rgh. A new pressure field p

computed from u⋆ completes the coupled solution and fixes u⋆.

The pressure equation is constructed by substituting the continuity equation into the
divergence of the momentum equation, see section C.3 on page 227. In FVM, the pressure
equation is defined as

∇ · 1
Adiag

∇prgh

1

= ∇ ·
(B(u⋆)

Adiag

)
2

. (4.79)

The terms Adiag and B(u⋆) come from the system

Adiagu⋆ = B(u⋆)−∇prgh, (4.80)

where the pressure term is separated from the original system, Adiag contains only the
diagonal entries of the resulting system without the pressure term, and B(u⋆) contains all
off-diagonal elements and source terms:

B(u⋆) =−(A−Adiag)u⋆+b. (4.81)
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Equation 4.79 is solved by the system

Ap[prgh] = bp, (4.82)

and each numbered term in the equation translates into the system as:

1.

∇ · 1
Adiag

∇prgh

The laplacian of the pressure is discretized as in Equation 4.77, resulting in

−aC(prgh)Cc− ∑
fi∈S

aNi(prgh)Ni = bC, (4.83)

with appropriate coefficient values.

2.

∇ ·
(B(u⋆)

Adiag

)
The divergence term is explicitly solved, i.e. it becomes a source term discretized as

∑
fi∈S

(B(u⋆)

Adiag

)
fci
·Sfi, (4.84)

where the terms bellow come from the momentum equation discretization described
earlier:(B(u⋆)

Adiag

)
Cc

=
1

Adiag

(CV

∆t
(ρouo)Cc

Equation 4.71

+−g ·h ∑
fi∈S

(ρo) fciSfi

Equation 4.74

+bC +(∇ ·Devo)Cc

Equation 4.78

)
.

(4.85)

With the new value of prgh, the velocity field u⋆ can be corrected with

u← B(u⋆)

Adiag
−

∇prgh

Adiag
, (4.86)

where u is the new divergence-free velocity field.

4.4 Remarks
• The DSL model consists of Equation 4.11, Equation 4.6, and Equation 4.7, respectively:

∂h′

∂ t
+∇ · (h′ū) = qe

ρ
,

∂ (h′ū)
∂ t

+∇S · (h′ū⊗ ū) =−τb

ρ
+h′gS−

1
2ρ

∇S(h′pb),

∇n · (h′ū⊗ ū) = h′gn−
1

2ρ
∇n(h′pb)−

1
ρ

npb,

where qe is given by Equation 4.9 and τb is given by Equation 4.13.
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• The PSL model consists of Equation 4.28, Equation 4.41, and Equation 4.43, respectively:

∇ ·u = 0,

∂ρu
∂ t

+∇ · (ρu⊗u) =−∇prgh−g ·h∇ρ +∇ · τ,

∂αs

∂ t
+∇ · (uαs) = ∇ ·

(
DAB∇αs

)
,

where τ is given by Equation 4.36.

• Table 6 lists the terms and constants in the DSL and PSL models.

Table 6 – Model parameters values.

Model Parameter Description
ρ Snow density [kg ·m−3]

DSL µ Voellmy’s dry friction
ξ Voellmy’s dynamic friction [m · s−2]
eb Erosion energy
ρa Air density [kg ·m−3]
µa Air viscosity [m2 · s−1]

PSL ρs Powder-snow density [kg ·m−3]
µs Powder-snow viscosity [m2 · s−1]

Dab Molecular diffusivity
νt Turbulent eddy viscosity
SC Turbulent Schmidt number

• The PSL model builds upon the simplifaction that the mixture fluid of snow and air is
incompressible.

• The PSL model is agnostic of the DSL model used, which means that other DSL models
serving the same type of information can replace the presented DSL model. The PSL
model requires only the DSL height field hdsl(x), surface-tangential field udsl(x), and the
height variation rate wh(x).

• The transition layer becomes a set of Dirichlet boundary conditions for the PSL’s bottom
boundary, particularly for the PSL velocity field u and volume concentration of snow field
α .

• An extra oscillatory term applied to the resulting quantities of the transition layer emulates
the intermittent behavior caused by turbulence in the front of the avalanche.
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CHAPTER

5
RESULTS

This chapter describes the final pieces to build the system for producing animations of
powder-snow avalanches, which includes the creation of the numerical meshes, choosing the
values for the parameters of the models, and exporting animation data.

The following section describes all remaining numerical details to complete the simula-
tion workflow. A discussion and analysis of the method is presented in section 5.2 on page 142.
Before presenting the final results, section 5.3 on page 151 quickly describes how simulation
data is converted into renderable geometry. The chapter finalizes with section 5.4 on page 157,
presenting the final results of avalanches simulated on natural terrain surfaces.

5.1 Numerical Setup

As described in the previous chapter, the numerical solutions require discretizing the
governing equations over decomposing the physical domain into a set of discrete cells for each
simulation. Each cell contains estimates of physical quantities, such as the velocity field u or the
concentration of volume αs. The transport of such quantities between the cells manifests as fluxes
through their boundaries. Each cell spans a discrete version of the governing equation based on
its fluxes and cell values, and the set of such equations produces a numerical system. The system
produces new values for the physical fields that evolve over simulation time, generating data for
each animation frame.

The following subsections detail the process described above for each PSA layer. Each
subsection describes the remaining pieces for each simulation: the numerical grid, the boundary

conditions1, and the numerical solvers. One extra subsection discusses the implementation of the
transition layer.

1 As mentioned, the fluxes used in the discretizations require a pair of cells. However, cells at the mesh’s
boundary lack neighbors and need boundary conditions to complete their discretizations. Refer to
subsection B.1.7 on how the FVM discretizes such boundary conditions.
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5.1.1 DSL

Numerical Grid

The numerical grid used in the simulation of the DSL is a three-dimensional discrete
surface represented by a set of two-dimensional flat2 polygonal cells individually bounded by
straight edges.

In simulation setups where the terrain is a plane, a set of regular cells poses no difficulties
for the numerical solution. However, in natural terrains with high curvatures, other polygonal
alternatives, such as triangular meshes, can produce mesh elements that better adapt to the terrain.
Particularly, the pMesh3 structure provided by OpenFOAM offers a flexible solution. The pMesh
fills a triangular mesh volume with a polyhedral mesh, composed mainly of hexahedra, providing
various benefits for subdivision and adaptiveness. The boundary surface of a pMesh may be
used as the DSL numerical grid. Figure 40 shows the two types of mesh described above.

Figure 40 – Two examples of meshes tessellating the same patch of terrain. On the left is a regular
quadrangular mesh. On the right is a polyhedral mesh that is well adapted for terrains with
complex geometries.

Source: Elaborated by the author.

Boundary Conditions

The DSL model consists of Equation 4.11, Equation 4.6, Equation 4.7. The equations
contain three unknown variables: the velocity field ū(x), the basal pressure field pb(x), and
the DSL height field h′(x). Since the basal pressure is explicitly solved inside the momentum
equation, the method needs boundary conditions for only the velocity and the avalanche height
fields. As listed in Table 74, a Neumann condition is used in all boundary edges for all fields.

2 Note that in practice, the vertices of a cell may not be coplanar.
3 The pMesh is a meshing option of the meshing library called cfMesh, incorporated in OpenFOAM.

See <https://cfmesh.com/>.
4 Recall the normal gradient ∇m along the direction edge bi-normal vector m. See section B.2 in

Appendix B.

https://cfmesh.com/


5.1. Numerical Setup 133

Table 7 – DSL Boundary Conditions.

Variable Boundary Condition
ū All ∇mū = 0
h′ All ∇mh′ = 0

Accuracy

The following tables give information on the solution of the numerical method de-
scribed in subsection 4.2.1. Table 8 lists the numerical schemes for interpolation used in each
discretization term, and Table 9 shows the numerical solvers for each numerical system.

The upwind scheme was used to compute all convection terms, while all transient
terms were discretized with the backward Euler scheme. The gradient terms were directly
discretized via the Divergence theorem, where all variables were computed at face centers
by linear interpolation. The boundedness column in Table 8 indicates if the scheme produces
resulting values within the original bounds of their respective fields in the cells.

Table 8 – DSL Numerical Schemes.

Term Scheme Boundedness Accuracy
∇S · (hoūo⊗ ū) Upwind Bounded First-Order

∇ · (hūo) Upwind Bounded First-Order
∂⋆/∂ t Backward Time - Second-Order

∇S(ho po
b) Gauss w/ Linear Interpolation Unbounded Second-Order

Both numerical systems were solved with Preconditioned bi-conjugate gradient (PBiCGStab)5

(VORST, 1992) along with the Diagonal-based Incomplete LU (DILU) preconditioner.

Table 9 – DSL Numerical Solvers.

System Solver Preconditioner
Aū = b PBiCGStab DILU

Ah[h] = bh PBiCGStab DILU

5.1.2 PSL

Numerical Grid

The numerical grid used in the simulation of the PSL is a three-dimensional discrete
volume represented by a set of three-dimensional cells individually bounded by flat faces.

Similar to DSL surface decompositions, the three-dimensional cells in the PSL grid may
consist of regular aligned boxes or more complex polygonal shapes. Note that regardless of
the choice of element type, mesh generation algorithms may still produce non-planar faces and
5 The PBiCGStab is designed for numerical systems with an assymetric matrix A, usually produced by

terms like the advection.
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concave cells. Figure 41 shows two examples of three-dimensional meshes, one consisting of
axis-aligned boxes and the second resulting from the pMesh structure mentioned earlier.

Figure 41 – Examples of PSL numerical grids. On the left, a mesh consisting of axis-aligned boxes
extruded from a quadrangular surface mesh. On the right, a polyhedral mesh with varying
element types and sizes.

Source: Elaborated by the author.

Boundary Conditions

The PSL model consists of Equation 4.28, Equation 4.41, and Equation 4.43. The
equations contain three unknown variables: the velocity field u(x), the concentration of volume
for the snow phase field αs(x), and the hydrostatic pressure prgh(x).

As shown by Figure 42, the boundary of the simulation domain is decomposed into
six patches, one for each direction of the coordinates axis. Therefore, a boundary condition is
defined for each variable over each patch. In particular, the terrain patch receives the boundary
conditions for u and αs that represent the transition layer.

The following list presents the considered options for boundary conditions, where ⋆

denotes any field mentioned earlier, ⋆b represents a defined value for this field at the boundary,
and nb is the normal of the boundary face pointing outwards the cell. Some conditions depend
on the direction of the flow, dictated by u ·nb, that characterizes inflow and outflow from the
domain:

u ·nb < 0→ Inflow,

u ·nb > 0→ Outflow.
(5.1)

• Zero Gradient — The Neumann boundary condition for zero flow.

∇nb⋆= 0. (5.2)
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Figure 42 – Regardless of the shape of the simulation terrain, six patches comprise the boundaries of
the numerical domain. Considering the slope alignment with the Cartesian axis x, each axis
associates a pair of patches respectively: Back and Front in ±y directions, Top and Terrain
in ±z, and Right and Left in ±x.

Source: Elaborated by the author.

• Dirichlet — Uses a known value ⋆b for the field.

⋆=⋆b. (5.3)

• Free — Allows inflow and outflow.⋆=⋆b, Inflow,

∇nb⋆= 0, Outflow.
(5.4)

• Free Velocity — Allows velocity inflow and outflow on boundaries with Dirichlet condi-
tion for pressure. u =−u ·nb, Inflow,

∇nbu = 0, Outflow.
(5.5)

• Slip — Allows only tangential velocities at the boundary.

(u)nb = 0. (5.6)

• No Slip
u = 0. (5.7)

• Total Pressure prgh = p0− 1
2 |u|

2, Inflow,

prgh = p0, Outflow ,
(5.8)

where p0 is a reference pressure value.
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• Fixed Flux Pressure — Ensures no flux

∇prgh =
φH/A−φ

|S f |Dp
. (5.9)

The choices of the different types of boundary conditions listed above have an impact not
only on the physical modeling of the problem but also on the stability of the numerical solution.
The cubical shape of the physical domain described earlier, given by the six boundary patches,
provides some combination options for boundary conditions. A natural choice is to consider
all five patches, besides the terrain patch, as open free boundaries where mass can freely flow
inwards and outwards — as in a large mountain. However, adding some constraints, such as wall
boundaries, might increase the method’s stability.

Figure 43 – Boundary patches can be modeled as closed or open boundaries. Mass will flow through
open boundaries, which can be free (allowing inflow and outflow) or restricted to inflow or
outflows. Although making all boundaries free makes sense (left), adding additional flow
restrictions, such as the solid top on the right, may help the numerical method.

Source: Elaborated by the author.

Figure 43 depicts two possible configurations, which model the domain as an open
box and a tunnel. Open boundaries are classified as free, inlet, and outlet boundaries. Inlet
boundaries allow only inflow, and outlet boundaries allow only outflow. From our experiments,
fixing a small velocity uε at the left and right patches, like a wind tunnel, produced more stable
results. Table 10 details the wind tunnel approach described above, where front and back patches
are modeled as walls. The values used in the terrain boundary condition are detailed later in
subsection 5.1.3.

Table 10 – "Wind Tunnel" PSL Boundary Conditions.

αs u prgh
Front/Back wall 0 Slip Zero Gradient

Left outflow Zero Gradient uε Zero Gradient
Right inflow 0 uε Zero Gradient
Top free Free Free (with pb) Total Pressure

Terrain - αin j uin j Fixed Flux Pressure
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Accuracy

The following tables give information on the solution of the numerical method described
in subsection 4.3.2. Table 11 lists the numerical schemes for interpolation used in each discretiza-
tion term, and Table 12 shows the numerical solvers for each numerical system. The vanLeer01

scheme listed in Table 11 is a TVD advection scheme6, introduced by van Leer (1974), that uses
limiter function to bound the results — in this case, to [0,1], indicated by the 01 suffix.

Table 11 – PSL Numerical Schemes.

Term Scheme Boundedness Accuracy
∇ · (ρΦū) vanLeer Unbounded Second-Order
∇ · (Φα) vanLeer01 Bounded Second-Order
∂⋆/∂ t Implicit Euler - First-Order
∇(u) Cell limited Gauss w/ Linear Interpolation 1.0 Unbounded Second-Order

The numerical systems were mainly solved by the PBiCGStab method along with the
DILU preconditioner for u and the symmetric equivalent preconditioner, the Faster version of
the Diagonal-based Incomplete Cholesky (FDIC), for αs and p.

Table 12 – PSL Numerical Solvers.

Term Solver Preconditioner
Aα [αs] = bα PBiCGStab FDIC

Au⋆ = b PBiCGStab DILU
Ap[prgh] = bp PBiCGStab FDIC

5.1.3 Transition Layer

As presented in subsection 4.3.1, the transition layer manifests as boundary conditions
for the mass and velocity fields, αs and upsl (the subscripts ⋆dsl and ⋆psl will be used in this
section to facilitate the distinction of DSL and PSL values, respectively). Such conditions are
defined by direct value assignment, characterizing the Dirichlet boundary condition listed for the
terrain patch on Table 10 in the previous section.

The boundary values of αs and upsl are defined for each terrain patch face fb on every
time step. These values are mainly based on temporal DSL fields, such as the DSL velocity field
udsl(x, t). Therefore, the terrain patch geometry represents the interface between both layers,
since each face fb will carry the state of the DSL at its location for a particular time t — see
Figure 44.

Note that the DSL grid and the PSL’s terrain patch may not share the same geometry or
topology. Moreover, since the simulation of the DSL is independent of the PSL’s simulation, it
may even use a different value of time steps — see Figure 44. Therefore, the interface between

6 See subsection B.1.5.
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Figure 44 – The DSL and PSL simulations can share different geometry, topology, or time steps. The
transition layer requires the transference of information between both layers. The example
below considers a DSL simulated in a hexagonal mesh registered at times [..., tm, tm+1, ...].
The terrain patch of the PSL grid is a quadrangular mesh and follows a different set of time
steps [..., tn, tn+1, ...]. When simulating the PSL, the DSL state is needed at time tn, which falls
between times tm−1 and tm; therefore, DSL values are interpolated temporally and spatially
between cell centers.

Source: Elaborated by the author.

the original DSL fields and their counterparts in the PSL’s terrain patch must map the values
spatially and temporally, so

⋆psl(x, t)≈⋆dsl(x, t), (5.10)

for any DSL field ⋆dsl(x, t) at any spatial location x and time t. As shown in Figure 44, such
approximation is performed by linearly interpolating values between DSL time steps and from
DSL face center positions.

Velocity Trigger

In an avalanche, the suspension of snow particles occurs after the DSL achieves enough
velocity and intensifies as the velocity increases. The intensification of the suspension, manifested
by the entrainment processes, can be defined by a function of the velocity, here emulated by a
sigmoid-like function:

ws(x) =
1

1+ exp(−u(x)+Umin)
, (5.11)

where Umin controls the minimum velocity required for the formation of the powder cloud. All
experiments in this chapter use Umin = 10 m · s−1.
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Front Distance

The front region of the snow avalanche comprises the eruption entrainment process and
is where most of the mass and momentum exchanges happen — the closer to the front position
x f , the higher the intensity of such dynamic. Therefore, αin j and uin j injection amounts at the
position x depend on its distance to x f . Such dependence can be emulated by the weight function

w f ront(x,x f ) = exp
(
−
∥ x−x f ∥

L f ront

)
, (5.12)

that decreases from 1 towards 0 as the distance ∥ x−x f ∥ increases. The term L f ront roughly
represents the size of the region in meters that defines the front region — i.e., the first L f ront

meters after the leading edge of the avalanche.

The distances ∥ x−x f ∥ are surface distances. The surface distance function Sd(x,x f )

defines the shortest path between two points on a surface, restricted to the surface (like the
geodesic distance). As the front position x f advances, the distance field d(x) is calculated every
time step via a front-propagation algorithm.

Source code 3 – Algorithm for computing front distance in the DSL.

1: front_cells = detectFrontCells ( DSL_mesh );

2: dist( front_cells ) = 0;

3: q.push( front_cells );

4: while (!q.empty ()) {

5: cell = q.front ();

6: q.pop ();

7: for( neighbor : cell. neighborsInDirection (-u(cell))) {

8: new_dist = dist(cell) + distance (cell , neighbor );

9: if(h( neighbor ) > h_min &&

10: dist( neighbor ) > new_dist ) {

11: dist( neighbor ) = new_dist ;

12: q.push( neighbor );

13: }

14: }

15: }

The algorithm, listed in Source code 3, works on the DSL grid cells by (1) first detecting cells
that contain the front leading edge, named front cells, and (2) then constructing the distance field:

1. Front Cells Detection:

Front cells are cells that intersect the front line of the DSL at a given time. The front line
is defined by the DSL’s height h and velocity udsl . A cell C is considered to intersect the
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front if there is a neighbor cell N downhill (Cz > Nz), at the direction of udsl(C), that is
empty (h(N)< hmin).

2. Distance Propagation:

The distance field computation starts by setting all front cell distances to zero and putting
them into a queue (lines 2-3). While the queue is not empty, the next cell in the queue is
taken, and any affected neighbor is pushed into the queue. A neighbor is affected if its
distance value must be updated. Each cell will hold the smallest distance propagated into
it.

For a given cell C, only non-empty neighbors in the upwind direction, −udsl(C), are
considered.

In the algorithm described above, a neighbor of a cell in the direction d is the neighbor cell for
which the shared face intersects with the ray cast from the cell’s center with direction d — see
Figure 45.

Figure 45 – The injection of mass and velocity depends on the distance from the avalanche’s leading edge.
On the left, front cells represent the leading edge, whose velocity directional neighbors are
empty (no DSL height). A directional neighbor is a neighbor whose shared face intersects the
direction ray d originated from the cell’s center (middle). On the right is the distance field
propagated from the front cells. The propagation follows the negative direction of velocity.

Source: Elaborated by the author.

Velocity Injection

The velocity injection occurs in the normal direction of the terrain and depends directly
on the front velocity, as described by Equation 4.56:

uin j = (2wh +ωu ∥ u f ront ∥)(−nb)

Since the front region extends for at least L f ront meters, a convenient assumption is to use the
DSL velocity as the front velocity u f ront ≈ udsl in every boundary point x, so the injection
velocity becomes:

uin j(x) = (2wh(x)+ωu ∥ udsl(x) ∥)(−nb(x)). (5.13)
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The term ωu summarizes the intermittent behavior at the front region. The many factors
that lead to the turbulent motion at the front include the eruption entrainment process, the
air intake from the ambient air, and the violent release of trapped air underneath. Also, the
entrainment of snow depends significantly on the constitutive properties of the snow cover.

The snow cover comprises multiple layers of snow of different densities, constituting
a heterogeneous body of snow. As such layers interact with the avalanche, they affect the
entrainment processes differently.

A practical solution to mimic the effects mentioned above is to use a spatial noise function
Ω(x) for ωu, so

ωu(x) = Ω(x), (5.14)

which causes random perturbations into the injection velocity associated with the complexity of
the snow cover body. Random surges of velocity represent chunks of weak layers being entrained
rapidly. In particular, the family of cellular noise functions, such as the Worley Noise (WORLEY,
1996), produces distinct space regions resembling natural patterns. As shown in Figure 46, once
computed over the terrain surface, these regions can be seen as chunks of snow packs of variable
densities.

Figure 46 – Cellular noise functions produce natural-like patterns that can compose the complex internal
structure of the snow cover. Such random variations in the term ωuu produce surges of
velocity that mimic the turbulent nature of entrainment processes.

Source: Elaborated by the author.

The combination of all factors described above now integrates the term uin j. Additionally,
an scalar factor γu can be used to modulate the injection velocity. Considering the front weight
explained earlier, the final form of the boundary condition of the velocity becomes:

(u)b = wsw f rontγuuin j +udsl, (5.15)

where ws is the suspension factor and w f ront is the front weight described earlier.
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Mass Injection

From Equation 4.61 in subsection 4.3.1, αin j is computed from the mass concentration

α
v
in j =

me

Mv

for the volume V in the boundary cell. However, the entrainment mass me defined in the previous
chapter takes the full entrainment of the DSL, which considers injecting the same mass entrained
by the DSL into the PSL. Although it does not harm the final animation, a more realistic approach
is to consider that only a portion of the snow cover gets into the PSL.

Therefore, a constant γα ∈ [0,1] can adjust the injection value to consider only a fraction
of the entrained mass. The final form of the boundary condition for αs is

(αs)b = wsw f rontγαωaα
v
in j, (5.16)

where ωa is similar to ωu and emulates the variable density of the snow cover.

5.2 Discussions
This section explores the influence of the terrain geometry and the model’s parameters

on the resulting animation. Although the principal goal of this project is the visual realism of a
powder-snow avalanche animation, which is, to some extent, subjective, this section brings some
quantitative analysis of the results. Each of the following results explores a particular discussion
in order to build a better understanding of the method:

• The influence of slope — page 143;

• The terrain topography — page 145;

• The model parameters — page 146;

• The numerical mesh — page 150.

All simulations consider the powder-snow avalanche triggered by the detachment of a
body of snow cover defined by a release area. Initially at rest, udsl = 0, the triggered body gets
into motion and composes the DSL, which induces the PSL. Unless otherwise specified, the
simulations presented in this section use the set of parameter values listed in Table 13. All DSL
simulations presented in this section are three-dimensional, and two-dimensional PSLs used a
cross section of their respective DSL.

Some of the following analyses use measurements of mass and energy. The discrete
approximation of such quantities in a given discrete PSL mesh results from the summation of the
individual cell measurements. Given the set of cells Ci containing the fields of velocity u and
concentration of volume αs, the total measurements are defined as:
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Table 13 – Model parameters values.

Simulation Parameter Description Value
ρ Snow density [kg ·m−3] 1500

DSL µ Voellmy’s dry friction 0.155
ξ Voellmy’s dynamic friction [m · s−2] 5000
eb Erosion energy 50

Transition γα Mass injection factor 0.1
Layer γu Velocity injection factor 1.6

L f ront Front extension [m] 40
ρa Air density [kg ·m−3] 1.2
µa Air viscosity [m2 · s−1] 1.4 ·10−5

PSL ρs Powder-snow density [kg ·m−3] 1.4
µs Powder-snow viscosity [m2 · s−1] 1 ·10−4

Dab Molecular diffusivity 2 ·10−4

• Cell Mass
mi = αsiViρs, (5.17)

where Vi is the volume of cell Ci;

• Total Mass
M = ∑

i
mi; (5.18)

Slope

The influence of the slope is studied using the simplified case of an avalanche descending
a ramp with a constant slope. This analysis considers a set of ramps and the fixed set of parameter
values in Table 13; only the slope varies between simulations.

In each simulation, a rectangular region on the top of the ramp represents the release
area of the DSL as depicted in Figure 47. The release area is constructed from the projection of a
rectangular region, defined in the xy plane, onto the ramp. The size of the release area is adjusted
so that the mass of the DSL is approximately the same across the different simulations.

After a fixed time interval tn, each avalanche may achieve a different velocity and mass
due to the influence of the slope. The different velocities result directly from the action of
gravity, expressed in Equation 4.6 in section 3, as the source term given by the surface-tangential
component h′gS. The greater the angle, the bigger the tangential acceleration. The curves in
Figure 48 represent the front position and velocity evolution for a given set of ramps. The angles
vary from 20 to 35 degrees, and it is clear how higher angles produce greater velocities and,
therefore, greater runout distances over time.

The velocity of the DSL directly impacts the PSL’s entrainment — recall the velocity
injection from Equation 5.15; Therefore, the slope affects the powder cloud formation process.
Figure 49 shows the profiles of cloud formations in the avalanche cases described above. Note
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Figure 47 – Scheme representing the initial conditions for each slope simulation. The initial release area
is defined by the projection of a rectangular region defined in the xy plane onto the ramp (left).
The plane region is adapted to each slope value so the initial mass is the approximately the
same for all simulations (right). Each simulation considers a ramp with a constant slope and
fixed model parameters.

Source: Elaborated by the author.

Figure 48 – The graph on the left shows the distances covered by four avalanches in terrains with different
slopes. After 30 seconds, the avalanche on a 35-degree slope covers more than 500 meters,
five times more than on a 20-degree slope. The right graph shows the evolution of the front
velocity for the same avalanches, where the steepest case achieves 30 m · s−1, and the flattest
keeps a constant speed. The oscillations in the front velocity curves are caused by the method
of front extraction and the effects of the interpolation between the PSL and DSL meshes.

Source: Elaborated by the author.

how the 20-degree slope case does not develop enough velocity to inject mass into the PSL. The
figure also shows the total mass of the powder cloud. Figure 50 on page 145 shows the resulting
clouds.
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Figure 49 – The graph on the left depicts the profile of the plume heights produced in avalanches descend-
ing different slopes. Higher slopes produce higher clouds, up to 40 m, in this experiment due
to higher velocities. Greater velocities induce more significant mass injections into the PSL.
The graph on the right shows the evolution of the total mass of the powder clouds.

Source: Elaborated by the author.

Figure 50 – Resulting clouds 30 seconds after release for 35, 30, and 25-degree slopes, from top to bottom,
respectively. Steeper slopes generate faster and bigger avalanches.

Source: Elaborated by the author.

Terrain Topography

The inherent complexity of natural terrains shapes the path taken by an avalanche. The
DSL follows the terrain’s topography, tunneling into fissures, bifurcating over sharp protuber-
ances, and spreading across open areas. Although the powder cloud does not hover over the
small terrain features, this source is the DSL, and its overall motion resembles the final path of
the dense avalanche. The following result explores such characteristics of the snow avalanche
flow by releasing a mass on a river bed-like terrain followed by bumps, as depicted in Figure 51
on page 146.
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Figure 51 – The figure below shows a modified ramp featuring a channel descending the terrain. The
channel descends straightly in the first section of the course and enters into a sine-like shape.
The channel flows into a series of bumps in the third and final stage.

Source: Elaborated by the author.

Figure 52 on page 147 presents the resulting simulation of a dense snow avalanche
triggered for the modified ramp mesh above. The three pictures depict the avalanche’s state
passing by the terrain’s three stages. In the first stage, the release area covers a channel section.
The image of the second stage, characterized by the curved channel, shows how the flow follows
the curved geometry. Although the DSL overflows the curves, most of its mass is channeled. The
last stage shows how the bumps in the terrain bifurcate the flow, and the avalanche accumulates
on their upper sides.

The behavior of the DSL flow over the complexities of the terrain has a direct impact on
the appearance of the front region of the powder cloud. Such an implication happens due to the
influence of the velocity and entrainment of snow, which depend on the DSL and the snow cover.
Figure 53 on page 148 visually compares the resulting front of the experiment described above
with an avalanche descending a flat ramp with similar initial conditions.

Model Parameters

The mixture density of the PSL, ρs, plays a central role in the motion of the powder cloud.
From the momentum equation of the PSL model, Equation 4.41 on page 118, the gradient of the
density field scales the action of gravity. Higher density differences induce higher accelerations
and increase the velocity while carrying more inertia. Moreover, high-density volumes have
stronger momentum and may displace more surrounding fluid. The following experiment lists
avalanches with powder snow densities varying from near-air density to higher values.
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Figure 52 – The figure below shows the DSL of an avalanche release in a channeled terrain. The color
map represents the height of the DSL, with brighter colors meaning greater heights. The three
images show the state of the DSL at each of the three terrain sections: the release in a straight
channel, a curved channel, and a plane region with bumps. Note how the bright colors mark
the terrain features.

Source: Elaborated by the author.

For a given DSL simulation data descending a flat 25-degree slope, Figure 54 on page 148
shows the resulting PSL 50 seconds after release time for four density values: 1.4, 2.5, 5.0, and
7.0 kg ·m−3. Note how the cloud distribution concentrates towards the head of the PSL as the
density value increases and how lower densities lead to more complex patterns. Figure 55 on
page 149 shows the total mass of the powder cloud along with the plume profiles developed by
the experiments listed above.

In the DSL model, the erosion energy eb modulates the entrainment rate. Higher values
lead to lower entrainment rates. The erosion energy value represents the energy required to
detach mass from the snow cover. The entrainment process maintains the avalanche motion by
introducing mass into the body, increasing the momentum. Therefore, higher entrainment rates
contribute to the acceleration of the avalanche. Figure 56 on page 150 shows the front position,
total mass, plume profile, and maximum velocities of DSL simulations using erosion energy
values, 15, 25, 100, and 400, respectively — Figure 57 shows the resulting PSL clouds.
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Figure 53 – On the left is an avalanche’s powder cloud descending the modified ramp; on the right is an
equivalent avalanche in a flat ramp. Note how the features of the underlying terrain geometry
manifest in the PSL. The left side clearly shows the sine-like structure from the second section
of the terrain.

Source: Elaborated by the author.

Figure 54 – Resulting clouds 50 seconds after release for four powder snow density ρs values, 1.4, 2.5,
5.0, and 7.0 kg ·m−3, from top to bottom, respectively. All triggered from the same DSL
simulation in a 25-degree slope.

Source: Elaborated by the author.

Mass and Momentum Injections

The injection of mass and velocity into the PSL contains some parametrization that
dictates the final shape of the cloud. From equations Equation 5.12, Equation 5.15, and Equa-
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Figure 55 – Measurements of 50 seconds-long PSL simulations for four powder snow density ρs values,
1.4, 2.5, 5.0, and 7.0 kg ·m−3. On the left is the evolution of the total mass of the powder
cloud. On the right the profile of the plume heights.

Source: Elaborated by the author.

tion 5.16, the four parameters considered are:

• Mass Injection Factor: γα controls the percent of mass entrained by the DSL that gets into
the PSL. Therefore, γα ∈ [0,1]; Figure 58 on page 152 shows the powder clouds colored by
the concentration of volume αs for four values of γα : 0.01, 0.1, 0.4, and 0.9. The highest
values concentrate in the front, where injection occurs, and flow in distinct patterns. Lower
values of γα produce visible structures, while higher values smooth out and fill the cloud
volume. Such differences result from the diffusion equation, Equation 4.43 on page 119,
driven by the gradient of αs; as greater gradient values induce higher diffusion rates.

• Velocity Injection Factor: γu scales the combined effect of air intake and snowpack
ejection displacement translated into velocity surges. Figure 59 on page 153 shows the
powder clouds produced with four values of γu: 1.0, 2.0, 4.0, and 8.0. The injection
velocity has an apparent effect on the size of the cloud. Higher velocities lead to higher
plumes and turbulent motion. Figure 60 presents graphs of the total mass and maximum
velocity values of the PSL over a 50 s simulation.

• Front Extension: L f ront controls the size of the avalanche front, i.e., the region where the
two parameters above have a more significant effect. L f ront is considered to be in the range
of 10∼ 40m. Figure 61 on page 155 shows the powder clouds produced with four values
of L f ront : 10, 20, 40, and 80. Smaller front regions result in short injection times from the
same terrain location, leading to smaller plume heights. Also, separate plumes become
more evident away from the front in such cases due to the spatial noise distribution in the
terrain. Extensive front regions inject mass from the same terrain position longer, giving
enough time to mix. Additionally, the overall height of the cloud increases as the injection
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Figure 56 – Measurements of 30 seconds-long DSL simulations for different values of erosion energy
eb values, 15, 25, 100, and 400. Note how the high-value avalanches accelerate faster but
stay behind at the end. The variations in the velocity curves result from the higher entrainemt
velocity term 2wh for smaller erosion energy values.

Source: Elaborated by the author.

velocities act longer. Figure 62 shows that although the total mass does not diverge much,
the curve profiles are notably different.

• Noise Factor: The coefficients ω⋆ introduce random oscillations into the entrainment of
the PSL. Such oscillations emulate the intermittent region’s turbulent nature and the snow
cover’s heterogeneous constitution. The turbulence plays a crucial role in the formation of
the plumes. In the constant slope case used in the previous experiments, the entrainment
sources, 2wh and udsl , vary slowly with the acceleration of the avalanche, leading to a
steady injection. The omission of an oscillatory factor results in a smooth PSL cloud, as
shown in Figure 63 on page 156.

Numerical Method
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Figure 57 – Resulting clouds 30 seconds after release for four erosion energy values, 15, 25, 100, and
400, from top to bottom, respectively. All triggered from their respective DSL simulations
in a 25-degree slope. Higher energy values lead to smaller αs fields (the last PSL is hardly
visible in the figure).

Source: Elaborated by the author.

The experiments presented in this section utilize ramps up to 1 km long. Natural terrains,
used at this chapter’s end, can present avalanche tracks of many kilometers. Such large scales
inevitably bring computational challenges for the numerical methods since the precision of the
results depends directly on the resolution of the grid.

Typical fluid simulations use cell grids a few centimeters wide, if not smaller. However,
compared to avalanche sizes, such resolutions can quickly increase the number of cells to
hundreds of millions. Therefore, cells in the order of meters become necessary. The following
experiments explore the convergence of the PSL model given a different set of two-dimensional
grid resolutions.

Figure 64 on page 156 depicts a series of powder snow clouds different numerical grids
with decreasing resolutions. As the cell sizes increases the higher numerical diffusivity becomes
apparent and lead to fewer flow details. Figure 65 presents the variation on the mean Courant
values and the time steps extracted from each simulation.

5.3 Rendering

Both simulations of the DSL and PSL produce data for rendering, where each time step
of the simulations provides the data for a respective frame in the final animation. Therefore, for
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Figure 58 – Resulting clouds 50 seconds after release for four mass injection factor γα values, 0.01, 0.1,
0.4, and 0.9, from top to bottom, respectively. All triggered from the same DSL simulation in
a 25-degree slope.

Source: Elaborated by the author.

an animation of 20 frames per second, the simulations must output data at intervals of 0.05s.

Given the inherent nature of their resulting fields, the rendering of each layer uses a
different type of data:

• The resulting field of the DSL simulation is the height of the dense avalanche at each
numerical cell in the terrain surface, which can be used to build a polygonal mesh to
represent the DSL surface.

• The PSL data is a scalar volume field representing the powder-snow concentration in
every numerical cell, thus a sparse volumetric density field can be used to represent the
powder-snow cloud.

DSL Surface

The surface render mesh of the DSL covers the set of two-dimensional cells Sdsl that
contains enough moving mass, defined as

Sdsl = {Ck∀k|hk > Hε},

where hk is the height of the avalanche in cell Ck, and Hε represents the minimum height required
for a cell to be considered an avalanche cell. The cells consist of the set of vertices Vdsl , where
each vertex vi ∈Vdsl is shared by a set of incident cells Ni.
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Figure 59 – Resulting clouds 50 seconds after release for four velocity injection factor γu values, 1.0, 2.0,
4.0, and 8.0, from top to bottom, respectively. All triggered from the same DSL simulation in
a 25-degree slope. Greenish colors (at the front) represent higher velocities.

Source: Elaborated by the author.

The construction of the render mesh Mdsl and its vertices VM is defined by the direct map
E : Vdsl →VM, defined as

mi = vi +hini, (5.19)

where mi ∈VM is the corresponding vertex in VM for the vertex vi, hi is the DSL height value at
vi, and ni is the terrain normal vector at vi. The computation of hi is done by averaging the cell
values from the incident cells in Ni:

hi =
1
|Ni| ∑

c∈Ni

hc. (5.20)

The process results in the extrusion of Sdsl by displacing each vertex in the normal
direction of the terrain surface by an amount computed from the mean height values from the
neighboring cells; see left in Figure 66. Note in the same figure that it is different from extruding
the cells individually, which could lead to discontinuities in the edges by producing steps between
cells with different height values.

PSL Cloud

As mentioned, a volumetric density field can represent the PSL cloud, meaning the final
result will be rendered as a volume of a three-dimensional scalar field φ(x). Generally, the field
representation considers a regular grid of cubic cells, called voxels, where a value of φ is defined
for each voxel ijk. This section will refer to the volumetric density field grid as the voxel grid.



154 Chapter 5. Results

Figure 60 – Measurements of 50 seconds-long PSL simulations for four velocity injection factor γu values,
1.0, 2.0, 4.0, and 8.0. On the left is the evolution of the total mass of the powder cloud. On
the right are the maximum velocity values over time. The oscillation present in the velocity
curves come from the noise factor in the entrainment process.

Source: Elaborated by the author. Source: Elaborated by the author.

The conversion of the simulation grid data into a voxel grid representing the PSL cloud
comes from the natural translation of the volume concentration of the snow phase, αs(x)7, into
density values for the voxels8 by a mapping function Γ : αs→ φ defined as

Γ(x) = γαs(x), (5.21)

where γ is a conversion factor that will be discussed later.

From the FVM, each simulation cell C contains a single value of αs, localized at its
center Cc, representing the mean value of the field over the cell volume CV . Similarly, each voxel
ijk contains a single density value, φ(ijk). Therefore, the output volume is an approximation
of the original field and its accuracy depends directly on the resolution of the voxel grid — see
Figure 67.

The data structure used for storing the voxels was the OpenVDB data structure (MUSETH
et al., 2013). OpenVDB, initially released by Dream Works Animation, is an open-source library
that implements a hierarchical data structure highly optimized for manipulating sparse volumetric
data. The data of each simulation step is converted into the OpenVDB and produces a single
file for each animation frame. 3d software packages, such as Blender (COMMUNITY, 2018),
widely support OpenVDB files.

All rendered images presented in this chapter were produced with a high-end renderer
called RenderMan®(CHRISTENSEN et al., 2018), particularly with the Non-Commercial Ren-
7 See section 4.3 on page 116.
8 Note that the density in the volumetric density field represented by the voxel grid is not related to

the physical property of density of the PSL. The term density in this rendering context refers to the
concentration of matter that will interact with light, analogous to smoke density.
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Figure 61 – Resulting clouds 50 seconds after release for four front extension factor L f ront values, 10, 20,
40, and 80 m, from top to bottom, respectively. All triggered from the same DSL simulation
in a 25-degree slope. Brighter colors represent higher αs values.

Source: Elaborated by the author.

Figure 62 – Measurements of 50 seconds-long PSL simulations for four front extension factor L f ront

values, 10, 20, 40, and 80 m. On the left is the evolution of the total mass of the powder cloud.
On the right the profile of the plume heights.

Source: Elaborated by the author. Source: Elaborated by the author.

derMan®25 version9. RenderMan®is a photorealistic rendering software based on physical
rendering models developed by Pixar Animation Studios. Due to the visual resemblance of
the powder-snow cloud with sky clouds, the strategy presented in RenderMan®’s documenta-

9 <https://renderman.pixar.com/store>

https://renderman.pixar.com/store
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Figure 63 – On top, the resulting powder cloud simulated with noise factors ωu and ωa. On the bottom, no
noise factor was used. The constant injection value leads to a smooth cloud surface, opposite
to the turbulent pattern generated by the oscillating injection.

Source: Elaborated by the author.

Figure 64 – Powder clouds generated from the same parameters and initial conditions for different grid
resolutions. From top to bottom, the grids contain cell sizes of 0.1, 0.5, 1.0, 5.0, and 10.0.
Note how the sharp features, such as vortices and curved shapes, smooth out as the cell size
increases. Only the general shape of the flow remains for larger cell sizes.

Source: Elaborated by the author.

tion10 guided the configuration of the rendering. For text completeness, Table 14 lists the main
configurations used in the final results.

10 <https://rmanwiki.pixar.com/display/REN25/Rendering+Clouds+with+Aggregate+Volumes>

https://rmanwiki.pixar.com/display/REN25/Rendering+Clouds+with+Aggregate+Volumes
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Figure 65 – The distribution of the Courant numbers and sub-time steps registered in the different resolu-
tion cases of cell sizes of 0.1, 0.5, 1.0, 5.0, and 10.0 (x-axis in the plots). As expected, larger
cells lead to smaller Courant numbers and allow larger time steps.

Source: Elaborated by the author. Source: Elaborated by the author.

Figure 66 – The render mesh that represents the DSL surface, blue in the figure, can be constructed by
extruding the elements of the simulation mesh, red in the figure. On the left, the extrusion
happens on the vertices defined by the DSL height values of the incident cells. On the right,
cells are extruded individually by their height values.

Source: Elaborated by the author.

Table 14 – Renderer configuration.

Parameter Value
Max Path Length 256

Multi-Scattering Approx. Bleed 0.9
Primary Anisotropy 0.8

Secondary Anisotropy −0.2
Lobe Blend Factor 0.2

5.4 Natural Terrain Examples

This section lists some examples of powder-snow avalanches simulated in complex
terrain geometries. Generally, the three-dimensional terrain geometry is constructed from two-
dimensional height maps, which may originate from:

• Procedural generation techniques: manipulate noise functions, such as the Perlin-noise,



158 Chapter 5. Results

Figure 67 – Consider a hexagonal cell from the simulation grid containing a single value of αs. The voxel
grid contains samples of αs from the underlying cell. Since the density field is defined only
on the lattice points ijk, the voxels’ resolution has a direct impact on the final result.

Source: Elaborated by the author.

Figure 68 – A cloud asset rendered with the workflow considered for the powder-snow cloud.

Source: RenderMan25 (2023).

to generate natural-like landscapes.

• Real-world topographical data: usually represented by Digital Elevation Models (DEMs),
with files in Geographical Information Systems (GIS) format.

The construction of the terrain geometry proceeds by projecting the map into a three-dimensional
plane and extruding each vertex of the plane by the corresponding height information of the map.

Given the regular distribution of the texels in the texture, a regular grid of quadrangular
cells represents the three-dimensional mesh. The grid initially lies in the XY plane, and the
vertices z coordinate is set to the height value of the terrain. Then, the mesh may be manipulated
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to attend to the numerical grid requirements, such as being converted to a triangular mesh or
going through a smoothing process.

5.4.1 Wolfsgrube Mountain

The Wolfsgrube Mountain is a 1641 m high mountain in the Bavarian Forest National
Park in southeastern Germany. It is part of the Lusen Ridge, the second-highest mountain range
in the Bavarian Forest after the Rachel Ridge.

This section utilizes a digital elevation model of the Wolfsgrube region to generate the
three-dimensional surface terrain — see Figure 69. The initial conditions of the dense snow
avalanche, such as the release area, follow the same conditions presented by Rauter and Tukovi
(2018) — see Figure 70a. The conditions reproduce the catastrophic event on 13 March 1988,
with a large release area of 196255 m2 and a vertical descent of 984 m (FISCHER et al., 2015).
The avalanche path starts with a 36.5-degree slope, falls into a gully 100 m wide, and opens into
the mountain base.

Figure 69 – A real photography of the Wolfsgrube mountain and the respective terrain surface generated
from the DEM.

(a) Picture of the Wolfsgrube.

Source: Federal Ministry Republic of Austria (2023).

(b) Surface mesh topography.

Source: Elaborated by the author.

Figure 70 shows the resulting DSL that descends in the Wolfsgrube terrain. The terrain
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topography drives the body of snow, characterized by a slab avalanche, through its channel and
renders a clear runout area. The PSL triggered is shown in Figure 71 at different moments of
the descent. Note how the powder cloud follows the terrain features by being channeled in the
middle of the track.

Figure 70 – Start and end states of the DSL. Note how the DSL stretches through the gully and deposit at
the base of the mountain. The topographic lines represent the vertical height of the terrain
with a bold line every 100 m.

(a) Initial slab release.

Source: Elaborated by the author.

(b) Run-out area.

Source: Elaborated by the author.

From a distance, it is possible to distinguish the plumes. However, the characteristics
billows do not appear. The main reason is that the method does not simulate turbulence, although
the noise factor introduced in the entrainment processes does generate instabilities in the cloud
similar to turbulence effects. Moreover, the resolution of the PSL grid in this particular simulation
is 5 m per cell, which induces smooth results and erases details, as shown in Figure 64.
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Figure 71 – Sequential frames of the full animation of the powder-snow avalanche triggered by the DSL
depicted in Figure 70.

Source: Elaborated by the author.

5.5 Computational Performance

This section presents some performance measurements from the results presented in
this chapter. The numerical simulations utilized the OpenFOAM v2026 core library based on
the CPU. The simulations ran in parallel — up to 20 threads. The equipment utilized was an
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Intel®CoreTM i9 13900k with 64 GB of RAM.

Table 15 lists the processing times for each simulation presented in this chapter. The
table presents the average time for simulations presented in groups, such as the four simulations
of density values. The name of the simulations characterizes which parameter was being studied
to facilitate identification. The first set of numbers, for the different slope angles, presents
one pair (column) of times and cell counts for each angle. All DSL simulations utilized three-
dimensional grids, oposed to PSL simulation, which utilized two-dimensional grids. Animations
were produced at 20 fps. Therefore, simulations of 30 seconds contain 600 frames, 50 seconds
contain 1000 frames, and 90 seconds contain 1800 frames.

Table 15 – Memory and time measurements of the simulations presented in this chapter.

Figure Simulations Type Duration [s] Total Time [s] Cell Count
Figure 50 Angles DSL 30 180 210 237 239 33450 32250 30825 29175

PSL 103 159 158 156 22300 21500 20550 19450
Figure 52 Modified DSL 30 24 32250

ramp PSL 17287 1612500
Figure 53 Ramp DSL 28 32250

PSL 11036 1612500
DSL 50 57 32250

Figure 54 ρs PSL 138 18734
Figure 57 eb DSL 34 32250
Figure 57 eb PSL 100 21500
Figure 58 γα PSL 145 18734
Figure 59 γu PSL 168 18734
Figure 61 L f ront PSL 143 18734
Figure 64 ∆x = 0.1 PSL 19393 375122
Figure 64 ∆x = 0.5 PSL 887 75004
Figure 64 ∆x = 1.0 PSL 350 37502
Figure 64 ∆x = 5.0 PSL 87 7480
Figure 64 ∆x = 10.0 PSL 65 3740
Figure 70 Wolfsgrube DSL 90 218 40895
Figure 71 PSL 24662 1516800
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CHAPTER

6
CONCLUSIONS

This chapter presents the conclusions and general discussions about the proposed method
for producing physically-based digital animations of powder snow avalanches. The previous
chapters explored existing research on the general topic of snow avalanches, predominantly from
engineering and geological sciences, which compose the mathematical and physical background
of the method.

The text presented a one-way coupling model for the animation of mixed-type avalanches.
The method performs two sequential simulations such that the first feed the second. Therefore,
the PSL simulation is agnostic to the DSL simulation method as long as the output data from the
DSL is compatible. Such an approach is particularly appealing to Computer Graphics systems.

The primary motivation for this work was to bring the study of avalanche-like phenomena
to the realm of computer graphics. Large-scale physical phenomena are complex events that are
not fully understood and are the subject of intense research across various disciplines. Although
there are well-known mathematical models for describing such phenomena, little can be found
in computer graphics literature.

Although the text presents a complete workflow for animating powder-snow avalanches,
it also represents an initial step into the subject. The extensive research presented in Chapter 3
brings a rich literature that offers numerous opportunities for new applications in Computer
Graphics. However, it also points out many challenges and open problems avalanche science
faces, consequently challenging Computer Graphics approaches.

6.1 Limitations

During the experiments, the numerical stability of the simulations became challenging.
Although the FVM offers reasonable flexibility regarding the grid’s topology, it proved very
sensitive to the geometry. The input mesh, produced from the DEM, usually carries sharp edges
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and non-planar faces, leading to concave grid cells. The numerical method must use orthogonal
correctors to mitigate such problems. Therefore, most terrain meshes had to be pre-processed
with smoothing methods and re-meshing algorithms to produce better-quality grids.

The current DSL method is limited to mildly curved terrains due to the nature of SWE.
Such a model requires small flow heights compared to the curvature. However, other alternatives
exist, such as the recent use of the MPM method for dense snow flows (LI et al., 2022). Moreover,
hybrid methods can bring solutions for both the DSL and the PSL simulations.

The method presented in section 5.3 for generating the volumetric field of the powder-
snow cloud for rendering is analogous to pixel rasterization schemes and brings inherent problems
such as aliasing. However, given the large size of simulation cells compared to voxel sizes,
increasing the resolution of the voxel grid or applying anti-aliasing techniques to it does not
necessarily solve the problem. The current method is purely dependent on the numerical grid
resolution regarding aliasing effects.

6.2 Future Work

The resolution of the PSL simulation is the principal factor for the visual quality of the
result. However, the simulation domains are inherently too large to utilize desirable cell sizes.
Although machine resources limit the code and can handle parallel runs efficiently, performance
optimization was not deeply explored. A natural and appealing path for future developments
is using GPUs to solve numerical systems or handle mesh element computations such as
interpolation of fields.

An alternative to avoid the increase in cell count is to employ post-processing techniques
to enhance the visual quality and realism of the resulting data. One possible approach to handle
the aliasing effects mentioned earlier is the use of interpolation techniques, such as the radial

basis functions Hermite interpolation (FASSHAUER, 2007), to compute voxel values.

The PSL model equations provide a convenient approach for describing the mixture
of fluids with a smaller set of equations. However, the equations used in the model bring
simplifications that should be explored in the future. For example, air drag is critical in shaping
the powder cloud, mainly the head of the snow avalanche.

Indeed, the leading edge of the PSL is one of its mesmerizing and distinct features.
However, the appearance of the front suffers directly and intensely from the effects of the low
resolution of the numerical grid. In future work, adaptive structures will be explored to develop
solutions that provide outstanding details on the surface of the cloud, mainly in the front. The
adaptivity should be able to provide dynamic refinement close to the evolving interface between
air and powder snow.

Turbulence is the core phenomenon in such avalanches. Although the noise factors in the
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entrainment model agitate the flow and lead to billow shapes, the method does not handle interior
flows and fluctuations caused by the intermittent region. The next step would be introducing
a turbulent model or exploring procedural turbulent models rooted back to wavelet turbulence

(KIM et al., 2008b).

Finally, future developments should consider the dual-coupling systems between avalanches
and physical objects, such as trees and buildings. Other than the base terrain, the interaction with
the surroundings perceptually integrates the scene and ensures realism. Physical interaction is of
utmost importance in the animation of physical phenomena.
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APPENDIX

A
BACKGROUND CONCEPTS

A.1 Continum Mixture Theory
The Continuum Mixture Theory (CMT) (ATKIN; CRAINE, 1976), which has long roots

in the work of Fick (1855), deals with substances in nature whose materials consist of more
than one constituent. The CMT characterizes the mixture as a superposition of multiple single
continua representing the different constituents whose particles can occupy each domain location
simultaneously.

Let the subscript (·)γ indicate a field of constituent Cγ , then for a set of n constituents
and the position function φ

γ

t for Cγ , the motion of the mixture is described by n equations

x = φ
γ

t (Xγ , t), 1≤ γ ≤ n, (A.1)

The equation comes from a Continuum Mechanics perspective, which considers a body under de-
formation over time. The reference state, with material point locations represented in Lagrangian
coordinates X, and the deformed state, with locations represented in Eulerian coordinates x, are
mapped by the deformation function φ

γ

t . For each location X, φ gives the spatial location x that
characterizes the deformed state of the body for constituent Cγ after a given time t. Consequently,
the velocity field vγ of constituent Cγ is

uγ =
∂φ

γ

t

∂ t
. (A.2)

The material derivatives for constituent Cγ ,
Dγ

Dt
, for an arbitrary scalar function s(x, t) and

an arbitrary vector function w(x, t) are

Dγs
Dt

=
∂ s
∂ t

+uγ ·∇s (A.3)

and
Dγw
Dt

=
∂w
∂ t

+(∇w)uγ . (A.4)
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The motion of the mixture can be computed by defining a mean velocity u of the mixture
following the requirement that the total mass flow is the sum of the individual flows so that

ρu = ∑
γ

ργuγ , (A.5)

where ργ represents the average density of Cγ over a small volume of the mixture and the mass
density of the mixture, ρ , is given by

ρ = ∑
γ

ργ . (A.6)
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APPENDIX

B
NUMERICAL METHODS

B.1 Finite Volume Method

Finite Volume Methods (FVMs) are derived directly from the integral form of conser-
vation laws. The FVM subdivides the physical domain into cells, named finite volumes, and
keeps track of the fluxes of physical quantities between cells — see Figure 72. Applying the
Gauss theorem connects the surface fluxes to volume quantities, allowing the discretization of
the governing equations over the finite volumes. This chapter is heavily based on (GONZALEZ;
STUART, 2008) and (DARWISH; MOUKALLED, 2016), refer to these books for a complete
discussion on the FVM.

Figure 72 – The FVM decomposes the physical domain into finite volumes (left). The figure on the right
illustrates mass fluxes between cells as the water flow between two tanks. From a conservation
perspective, the mass in a finite volume will change only due to fluxes at the boundaries.

Source: Elaborated by the author.

Consider the one-dimensional case for an arbitrary quantity specified by the unknown
function q(x, t) at a given location x and time t. If this quantity represents the density of a
substance, the sum ∫ xb

xa

q(x, t)dx (B.1)
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gives the total mass of the substance in the section between xa and xb at a particular time t. As
the flow evolve, the mass of the substance in [xa,xb] might change over time due to the flux of
matter at the endpoints xa and xb. If we know the flow velocity function u(x, t), then the flux of
mass f (x, t) can be defined as

f (x, t) = u(x, t)q(x, t). (B.2)

The following integral form gives the change of mass over time:

d
dt

∫ xb

xa

q(x, t)dx =− f (x, t)
∣∣∣xb

xa
. (B.3)

In particular, if q and f are smooth, the equation above can be written in the differential form

d
dt

∫ xb

xa

q(x, t)dx =−
∫ xb

xa

∂

∂x
f (x, t)dx

∴
∫ xb

xa

[
∂

∂ t
q(x, t)+

∂

∂x
f (x, t)

]
dx = 0

∴
∂

∂ t
q(x, t)+

∂

∂x
f (x, t) = 0. (B.4)

Figure 73 – The continuous field q(x, t) represents the distribution of a physical quantity over the physical
domain at a given time t. The FVM decomposes the domain into cells Ci centered at positions
xi. Cell faces at xi± 1

2
represent the boundaries through which q flows. The average value Qi

approximates q inside Ci, and Fi± 1
2

approximate the flux at faces in xi± 1
2
.

Source: Elaborated by the author.

The 1D domain decomposition in Figure 73 defines cells centered at xi locations with
faces at xi± 1

2
locations. The value Qi is the approximation of q in the cell centered at xi and is the

average value of q over the interval Ci = (xi− 1
2
,xi+ 1

2
):

Qi ≈
1

∆xi

∫
Ci

q(x, t)dx, (B.5)

where ∆xi = |Ci|. Similarly, the functions

Fi− 1
2
(Qi−1,Qi)≈

1
∆t

∫ tn+1

tn
f (xi− 1

2
, t)dt

Fi+ 1
2
(Qi,Qi+1)≈

1
∆t

∫ tn+1

tn
f (xi+ 1

2
, t)dt

(B.6)
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approximate the fluxes of q at the face locations xi± 1
2
. Notice that F depends only on the

neighboring values Qi and Qi±1 over the time interval ∆t = tn+1− tn. By time integrating
Equation B.3 over the time interval ∆t, the approximations above, Qi and Fi± 1

2
, can be used

directly to approximate Equation B.3 entirely1. This procedure illustrates the essence of the
FVM: approximate differential equations by using just volume quantities and boundary fluxes.

B.1.1 The Divergence Theorem

Figure 74 – The visual illustration of the Divergence Theorem: The total divergence of a vector field u
inside a volume Ω equals the total net flux of u passing through the boundary surface ∂Ω

with the unit vector field n pointing outwards ∂Ω.

Source: Elaborated by the author.

The central tool of the FVM is the Gauss theorem, also known as the Divergence

Theorem. For a given bounded region Ω with boundary ∂Ω, the theorem connects the total
volume divergence of a vector field u(x, t) inside Ω with the net flux of u through ∂Ω – see
Figure 74. Let n(x) be the field of unit vectors normal to ∂Ω; the divergence theorem reads:∫

Ω

(∇ ·u)dΩ =
∮

∂Ω

(u ·n)d∂Ω. (B.7)

In the discrete setting, the boundary surface ∂Ω is approximated by a set of polyg-
onal faces S ≈ ∂Ω. The following sum approximates the integral in the right-hand side of
Equation B.7: ∮

∂Ω

(u ·n)d∂Ω≈ ∑
fi∈S

∫
fi
(u ·n)dS (B.8)

where fi, with index i ∈ [1, |S|], represents each face in S. The Gauss quadrature can approximate
the solution of the face integral inside the sum in Equation B.8. Using the trapezoidal rule in
any face fi, only one integration point located at fi’s center fci results in second-order accuracy.

1 Let the superscript (·)n denote the time step index, then it is possible to obtain the following explicit
form for Equation B.3: Qn+1

i = Qn
i +

∆t
∆x(F

n
i− 1

2
−Fn

i+ 1
2
).
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Thus, for the face area vector Sfi that points outwards the finite volume at face fi, the integral is
approximated by ∫

fi
(u ·n)dS≈ (u) fci ·Sfi = Ji ·Sfi, (B.9)

where the subscript (⋆)p indicates the value of the quantity realized in the point p. The symbol
Ji will be used for now on to represent the quantity transported on the flux evaluated at fci. The
final definition of Ji ·Sfi , discussed later in subsection B.1.6, will produce the linear system of
equations that will provide the numerical solution for the PDEs. As represented in Figure 75,
applying Equation B.9 in Equation B.8 gives the approximated solution of the total flux passing
through the surface S: ∮

∂Ω

(u ·n)d∂Ω≈ ∑
fi∈S

Ji ·Sfi. (B.10)

Figure 75 – The total surface flux passing through the boundary surface ∂Ω can be approximated by the
sum of the individual face fluxes Ji ·Sfi in the discrete surface S.

Source: Elaborated by the author.

The single-point Gauss quadrature could also be applied to approximate the volume inte-
gral in Equation B.7. For the mid-point c, and Ω volume V , the volume integral is approximated
by ∫

Ω

(∇ ·u)dΩ≈ (∇ ·u)cV, (B.11)

which combined to Equation B.10, gives the approximation for ∇ ·u over Ω:

(∇ ·u)c ≈
1
V ∑

fi∈S
Ji ·Sfi. (B.12)

The Gauss theorem is not restricted to vector fields such as u and the internal product (·).
The general form of the theorem is∫

Ω

(∇∗Ψ)dΩ =
∮

∂Ω

(Ψ∗n)d∂Ω, (B.13)

where Ψ is a generic tensor field that accepts any particular product operation ∗. This general-
ization enables the discretization of most differential terms in the Partial-Differential Equations
(PDEs) commonly solved by FVMs. The following section details the discretization process of
such equations, including the terms that do not accept the divergence theorem.
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B.1.2 Spatial Discretization

This section lists the types of terms that appear in common physical models solved by
FVMs, such as the velocity divergent term ∇ ·u in the previous section. In this section, ρ(x, t),
p(x, t), q(x, t), and φ(x, t) are scalar fields, fb(x, t) and u(x, t) = (ux,uy,uz) are vector fields, and
Γ, µ , and ν are constants. Some equations decouple n from Sf by recalling

Sf = (S f x,S f y,S f z) = n ∥ Sf ∥= nS f

• Divergent term ∇ ·u:∫
Ω

∇ ·udΩ =
∮

∂Ω

(u ·n)d∂Ω≈ ∑
fi∈S

(u) fci ·Sfi. (B.14)

• Convective term ∇ · (ρuφ):∫
Ω

∇ · (ρuφ)dΩ =
∮

∂Ω

((ρuφ) ·n)d∂Ω≈ ∑
fi∈S

(ρuφ) fci ·Sfi. (B.15)

• Convective term ∇ · (ρu⊗u):∫
Ω

∇ · (ρu⊗u)dΩ =
∮

∂Ω

((ρu⊗u) ·n)d∂Ω≈ ∑
fi∈S

(ρu⊗u) fci ·Sfi. (B.16)

(ρu⊗u) fc ·Sf =

ρ

uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz


fc

·Sf = ρ

uxuxS f x +uxuyS f y +uxuzS f z

uyuxS f x +uyuyS f y +uyuzS f z

uzuxS f x +uzuyS f y +uzuzS f z


fc

.

(B.17)

• Diffusion term ∇ · (Γ∇φ):∫
Ω

∇ · (Γ∇φ)dΩ =
∮

∂Ω

(Γ∇nφ)d∂Ω≈ ∑
fi∈S

(Γ∇nφ) fciS f i, (B.18)

where S f i =∥ Sfi ∥. The computation of the gradient of φ is discussed in subsection B.1.4.

• Diffusion term ∇ · (ν∇⊗u):∫
Ω

∇ · (ν∇⊗u)dΩ =
∮

∂Ω

((ν∇⊗u) ·n)d∂Ω≈ ∑
fi∈S

(ν∇⊗u) fci ·Sfi. (B.19)

(ν∇⊗u) fc ·Sf =

ν


∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂ z

∂uy
∂ z

∂uz
∂ z


fc

·Sf = ν


∂ux
∂x S f x +

∂uy
∂x S f y +

∂uz
∂x S f z

∂ux
∂y S f x +

∂uy
∂y S f y +

∂uz
∂y S f z

∂ux
∂ z S f x +

∂uy
∂ z S f y +

∂uz
∂ z S f z


fc

.
(B.20)
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• Tensor term ∇ · (µ(∇⊗u)T ):∫
Ω

∇ · (µ(∇⊗u)T )dΩ =
∮

∂Ω

((µ(∇⊗u)T ) ·n)d∂Ω≈ ∑
fi∈S

(µ(∇⊗u)T ) fci ·Sfi. (B.21)

(µ(∇⊗u)T ) fc ·Sf =

µ


∂ux
∂x

∂ux
∂y

∂ux
∂ z

∂uy
∂x

∂uy
∂y

∂uy
∂ z

∂uz
∂x

∂uz
∂y

∂uz
∂ z


fc

·Sf = µ


∂ux
∂x S f x +

∂ux
∂y S f y +

∂ux
∂ z S f z

∂uy
∂x S f x +

∂uy
∂y S f y +

∂uy
∂ z S f z

∂uz
∂x S f x +

∂uz
∂y S f y +

∂uz
∂ z S f z


fc

.

(B.22)

• Scalar gradient term ∇φ :

In this particular case, the Green-Gauss theorem2 is used instead:∫
Ω

∇φdΩ =
∮

∂Ω

(φn)d∂Ω≈ ∑
fi∈S

(φ) fciSfi. (B.23)

Note that the discretizations above require evaluating values in face locations, such as
the fields u and φ , and even a differential operator, as the gradient ∇φ in Equation B.18. The
computation of such values depends directly on how the fields are stored in the numerical mesh.
Moreover, the mesh’s geometry also affects the accuracy of the computations, as detailed in
subsection B.1.4 on page 213.

The divergence theorem does not work for all terms found in equations. Transient and
source terms, marked in the equations bellow, are examples of terms that do not need the
transformation of their volume integrals into surface integrals. Their discretization comes directly
from the approximation of volume integral:

∂ (ρφ)

∂ t
transient

+∇ · (ρuφ) = ∇ · (Γ∇φ)+ q
source

, (B.24)

∂u
∂ t

transient

+∇ · (u⊗u)−∇ · (ν∇⊗u) =−∇p+ fb
source

. (B.25)

The following approximations consider the single-point volume integration with integration
point located at the cell center Cc and cell volume CV :

• Source terms q and fb:∫
Ω

qdΩ≈ (q)CcCV and
∫

Ω

fbdΩ≈ (fb)CcCV . (B.26)

2 The Green-Gauss theorem states that the surface integral of a scalar function φ is equal to the volume
integral of the gradient of φ , ∇φ .
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• Transient terms ∂ (ρφ)
∂ t and ∂u

∂ t :

Assuming that Ω does not change its volume in time, i.e. CV is constant, then the transient
term discretization can also be approximated by the Gauss quadrature for the volume
integral: ∫

Ω

∂ (ρφ)

∂ t
dΩ≈ ∂ (ρφ)Cc

∂ t
CV and

∂ (u)
∂ t

dΩ≈ ∂ (u)Cc

∂ t
CV . (B.27)

To illustrate the process of the FVM, consider Equation B.24. The first step is to set the
proper integration for each term:∫

Ω

∂ (ρφ)

∂ t
dΩ+

∮
∂Ω

((ρuφ) ·n)d∂Ω =
∮

∂Ω

((Γ∇φ) ·n)d∂Ω+
∫

Ω

qdΩ, (B.28)

and then perform the approximations

∂ (ρφ)Cc

∂ t
CV + ∑

fi∈S
(ρuφ) fci ·Sfi = ∑

fi∈S
(Γ∇φ) fci ·Sfi +(q)CcCV . (B.29)

The next step is to discretize the temporal derivative, marked in the equation above. The following
section discusses the approximation of the transient term.

B.1.3 Time Integration

The process of temporal discretization follows the same approach taken until now, which
consists of the integration over the time variable t. Like the one-dimensional spatial discretization
presented earlier, temporal cells Tn of size ∆t split the timeline, so the time index n ∈ [0,+∞)

represents the temporal cell center tn = t0 + n∆t — see Figure 76. Similarly, the temporal

face location happens on indices n± 1
2 . The transient solution solves the equations in order

[t0, ..., tn−1, tn, tn+1, ...].

Figure 76 – The discretization in time splits the temporal line into temporal cells of size ∆t. Similar to
spatial flux computations, temporal face locations are also of interest in temporal discretization.
The temporal dependency makes the computation of φ values follow the order [...,n−1,n,n+
1, ...].

Source: Elaborated by the author.
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In particular, the integration for the temporal cell Tn, i.e. for the time interval [tn− 1
2
, tn+ 1

2
],

of Equation B.29 results in

∫ tn+∆t
2

tn−∆t
2

∂ (ρφ)Cc

∂ t
CV dt +

∫ tn+∆t
2

tn−∆t
2

[
∑
fi∈S

(ρuφ) fci ·Sfi

]
dt =

∫ tn+∆t
2

tn−∆t
2

[
∑
fi∈S

(Γ∇φ) fci ·Sfi

]
dt +

∫ tn+∆t
2

tn−∆t
2

[
(q)CcCV

]
dt

(B.30)

For simplicity, let L(φ) represent the sum of all spatially discretized terms except the transient
term and rewrite the equation above as

∫ tn+∆t
2

tn−∆t
2

∂ (ρφ)Cc

∂ t
CV dt +

∫ tn+∆t
2

tn−∆t
2

Ldt = 0. (B.31)

One possible approach is to solve the second term with the mid point rule:

∫ tn+∆t
2

tn−∆t
2

Ldt ≈ (L)n
∆t, (B.32)

where the superscript (·)n indicates the temporal location of the variables in L. In the FVM, the
first term is approximated by the face fluxes in the same manner as in the previous sections:

∫ tn+∆t
2

tn−∆t
2

∂ (ρφ)Cc

∂ t
CV dt ≈CV

(
(ρφ)

n+ 1
2

Cc
− (ρφ)

n− 1
2

Cc

)
. (B.33)

Putting all together, Equation B.31 becomes

CV

∆t

(
(ρφ)

n+ 1
2

Cc
− (ρφ)

n− 1
2

Cc

)
+(L)n = 0. (B.34)

Note that the equation above contains samples from times [tn− 1
2
, tn, tn+ 1

2
]. The form of how these

elements are computed will depend on the choice of interpolation for the temporal fluxes located
at tn− 1

2
and tn+ 1

2
. Figure 77 illustrates the two common approaches listed here:

• Implicit Euler Scheme:

The first-order implicit Euler scheme, or first-order upwind, considers the value of the
element at tk to be the same as the value at tk+ 1

2
. In other words, unknown values receive

the same values of locations halfway backward. Therefore, the flux terms in Equation B.34
receive the same values of the respective cell centers:

CV

∆t

(
(ρφ)n

Cc
− (ρφ)n−1

Cc

)
+(L)n = 0. (B.35)

Note that only the data from time tn−1 is available at this point. The time of the new values,
tn, is the same as the time of the spatial term (L)n. It means that (L)n is not available yet,
and the whole system of equations for both terms needs to be solved together.
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• Explicit Euler Scheme:

The first-order explicit Euler scheme considers the value of the element at tk to be the same
as the value at tk− 1

2
. Therefore, face fluxes receive the same values of cell centers halfway

forward:
CV

∆t

(
(ρφ)n+1

Cc
− (ρφ)n

Cc

)
+(L)n = 0. (B.36)

The spatial discretization lies in a previous time tn regarding the new time tn+1. All data is
available for time tn, meaning that the new step can be computed directly as:

(ρφ)n+1
Cc

= (ρφ)n
Cc
− ∆t

CV
(L)n. (B.37)

Figure 77 – This figure visually represents implicit and explicit Euler schemes at step N in time tn. Filled
circles in the timeline represent data available for the computation. The dashed column
represents the location in time of the spatial discretization L. In the case of the implicit Euler
scheme, φ n is unknown, then (L)n must be computed along with the new transient term.

Source: Elaborated by the author.

The literature offers a variety of temporal discretization methods, including higher-order
Euler schemes, the Crank-Nicholson method, which uses a central difference scheme, and
methods that consider non-uniform time steps. Refer to Gonzalez and Stuart (2008) and Darwish
and Moukalled (2016) for further information.

B.1.4 Face Computations

As mentioned earlier, the computation of the fluxes Ji ·Sfi requires the evaluation of
values at the face centers fci. Some numerical settings conveniently store fields in face centers,
the case of staggered grids with velocity components. However, values resulting from volume
integrals are located at cell centers. In such cases, the interpolation of cell values must be
interpolated to face locations.

Figure 78 depicts two pairs of cells, C and Ni, with respective centers Cc and Nci, and
volumes CV and NVi, shared by a single face fi with center fci. Let di = Nci−Cc connect both



214 APPENDIX B. Numerical Methods

Figure 78 – The flux of a face fi requires field values at the face center fci. Usually the field values are
found in the cell centers, Cc and Nci, and must be interpolated to the face locations. The usual
approach is to interpolate along the line di that connects both cell centers at the intersection
point fpi. In skewed grids, fpi deviates away from fci by p̄ci, requiring further calculations
for fci.

Source: Elaborated by the author.

cell centers and intersect the face fi at point fpi, where fpi is not necessarily the same as fci
3, as

shown in the figure. Suppose the cell values for the scalar field φ(x) for both cells are

φC = (φ)CcCV and φNi = (φ)NciNVi. (B.38)

The common approach is to assume that φ varies linearly along di, meaning that the estimate at
fpi is the linear interpolation of φC and φN :

φ fpi = λCφC +λNφN . (B.39)

where λC and λN are interpolation coefficients. However, the second order accuracy of the flux
discretization requires a value located at the face center fci. Therefore, a skewness correction

must be performed in order to compute φ fci:

φ fci = φ fpi +(∇diφ) fpi · p̄ci, (B.40)

where p̄ci = fci− fpi and the gradient (∇diφ) fpi can be computed as(
∂φ

∂di

)
fpi

=
φN−φC

∥ di ∥
. (B.41)

Some flux equations will contain differential operators, such as the gradient operator ∇φ

in the diffusion term described in Equation B.18 on page 209. Let Γ = 1 in the equation and the
face normal vector ni be decoupled from Sfi = ni|Sfi|= niS f i, then:

Ji ·Sfi = (∇φ) fci ·Sfi = (∇φ ·ni) fciS f i = (∇niφ) fciS f i
4. (B.42)

3 In skewed grids, di may not intersect the face at its mid-points.
4 The operator ∇n is referred to as the surface normal gradient.
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Figure 79 – Depending on the orthogonality of the grid, the connecting vector di deviates from Sfi. Both
directions are equal on the left, and the vectors are colinear. In such a case, the direction of
di fully represents the flux direction. The same cannot be said about the setting on the right,
where the flux will contain a non-orthogonal component.

Source: Elaborated by the author.

In the track of the effects skewed grids produce on interpolation methods for face values,
the non-orthogonality of grids will also directly impact flux computations. Figure 79 presents
two cases that show the alignment of the vector di with Sfi. In the simpler case, where di aligns
with ni, yielding

(∇niφ) fci =
(

∂φ

∂ni

)
fci
=
(

∂φ

∂di

)
fci
=

φNi−φC

∥ di ∥
, (B.43)

The equation above works because since the flux flows parallel to di, and the fact that di is
perpendicular to fi implies that Ji ·Sfi describes the whole flux quantity. Therefore, the gradient
along di is valid and sufficient.

For non-orthogonal cases, when there is an angle θ > 0 between ni and di, the accuracy
of Equation B.42 can be maintained by decomposing the discretization into two parts:

(∇niφ) fci = (φNi−φC) ̸⊥corri

orthogonal part

+(∇φ) fci · (ni− ̸⊥corri di)

correction

. (B.44)

where the correction half is computed from known values of φ . There are various strategies
to define ̸⊥corri . The following three examples (a) enforce di ⊥ (ni−di), (b) pretend the di

direction is orthogonal to the face fi, and (c) make (ni−di)⊥ Sfi:

a) minimum correction

̸⊥corri=
cosθ

∥ di ∥
. (B.45)

b) orthogonal correction

̸⊥corri=
1
∥ di ∥

. (B.46)

c) over-relaxed

̸⊥corri=
1

∥ di ∥ cosθ
. (B.47)
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The next step is assembling a numerical system of equations from the resulting discretiza-
tions described so far. However, before proceeding to this final step in subsection B.1.6, the
following section discusses further the discretization of convection terms.

B.1.5 Advection Schemes

The convective terms listed in subsection B.1.2, Equation B.15, and Equation B.16 model
the transport of physical quantities by a velocity field. A more generic form is

∇ · (u∗Ψ)5, (B.48)

where Ψ can be a tensor of any rank field with its appropriate product ∗. The transport phe-
nomenon described above is referred to as advection6, and its physical meaning provides an
alternative computation of the discretized term.

Consider the following example of a mass flux carrying a scalar property given by φ(x):∫
Ω

∇ · (ρuφ)dΩ =
∮

∂Ω

((ρuφ) ·n)d∂Ω≈ ∑
fi∈S

(ρuφ) fci ·Sfi

≈ ∑
fi∈S

(ρu) fci ·Sfiφ fci

≈ ∑
fi∈S

Φ fciφ fci ,

(B.49)

where Φ fci = (ρu) fci · Sfi is the mass flux at fci, which can be computed via interpolation.
Applying the same interpolation strategy for the computation of φ f ci, although as accurate as
Φ f ci, may lead to an unstable numerical method. The solution should come from the physical
interpretation of the transport phenomenon that carries φ along with the flux.

The idea is that the quantity φ f ci at the face must come only from one side of the face, the
side against the flow direction, called the upwind. Conversely, the side along the flow direction is
called the downwind. In other words, the value of φ f ci comes from the upwind cell and is given
by an upwind scheme.

In the simple setting of the upwind scheme, the value of φ fci is given by

φ fci =

φu, Φ fci ≥ 0,

φd, Φ fci < 0,
(B.50)

where φu is the upwind cell value of φ , and φd is the downwind cell value. Figure 80 depicts
both the interpolation and the upwind schemes; note how the linear interpolation scheme is
numerically more accurate, but physically the upwind scheme makes more sense.
5 Sometimes the form includes density as well, ∇(ρu∗Ψ), implying a mass flux.
6 In literature, advection and convection are used almost interchangeably, with the common difference

that in convection, the transport is also caused by diffusion.
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Figure 80 – A one-dimensional example comparing the results produced by linear interpolation and a
simple upwind scheme, φ L and φU . The former uses both upwind and downwind cell values,
φu and φd , but is not physically accurate. The latter uses just φu, since it is carried by the flow
in the right direction.

Source: Adapted from Greenshields and Weller (2022).

Despite its physical argument, however, the upwind scheme suffers from high diffusivity
due to its low numerical accuracy. Therefore, diverse alternative upwind schemes try to diminish
these issues, such as combining both methods:

φ fci = (1−β )φU +βφ
L, (B.51)

where φ L is the value provided by the interpolation method, and φU is given by the upwind
scheme, Equation B.50. The interpolation factor β can be optimized for each face in the numerical
grid and various schemes define formulations for β , such as the so-called Total Variation
Diminishing (TVD) schemes. Refer to Greenshields and Weller (2022) for a introduction about
TVD schemes and others.

The linear interpolation scheme does not guarantee bounded solutions for ∇ ·uφ , resulting
in φ values outside the interval [min(φu,φd),max(φu,φd)]. Boundedness is particularly important
when dealing with bounded properties, such as the concentration of volume α ∈ [0,1]. The TVD
schemes mentioned above try to diminish the unboundedness problem, but another class of
schemes takes a different approach.

The Flux-Corrected Transport (FCT) methods, introduced by Boris and Book (1973),
use low and high-order7 methods to compute flux values, ΦL and ΦH , respectively, to produce a
bounded flux. The final flux is given by

Φ = Φ
L +λ (ΦH−Φ

L), (B.52)

where λ ∈ [0,1] is the weighting factor. The trick relies on the computation of λ , which takes
into account all fluxes in a particular cell, instead of a single face. The desired result is that no
new minima or maxima values of φ appear from one time step to the next.
7 The reasoning comes the fact that low-order methods are bounded, but less accurate, while high-order

methods are accurate but unbounded.
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With all discretizations in place, it is now possible to construct a numerical system of
equations that will provide the solution for the equations. The following section combines all the
steps described so far and completes this introduction to FMVs.

B.1.6 Numerical Linear System

The last piece in the puzzle relies on finalizing the computation of the face fluxes.
Consider a more general flux function F( f ) = Ff = J f · Sf for an arbitrary quantity q(x, t).
Different ways exist to compute Ff ; however, the computation schemes generally rely on the
values from the two neighboring cells. Like the one-dimensional flux functions Fi±1 on page 206,
the idea is that the flux of any face will depend only on the values ”Qi” of the two connected
cells. In particular, the flux F( f ) between two cells C and N connected by the face f is defined
as

F( f ) = J f ·Sf = αCQC +αNQN +β , (B.53)

where αC and αN are the linear coefficients for the averaged8 values of q, named QC and QN ,
for cells C and N, respectively. The last term, β , is the non-linear term of the combination. The
decomposition of F( f ) described above is called flux linearization and is the building block for
the final system of discretized equations:

Ax = b, (B.54)

where A is a matrix of coefficients provided by the discretization, x is the vector of unknown
values for a particular variable, and b is a vector of the correspondent source and non-orthogonal
values. This numerical system will provide an approximate solution for the original equations.
Take as an example the diffusion equation for a scalar field φ with its source q:

−∇ · (∇φ) = q. (B.55)

From Equation B.18 and Equation B.26, the discretized form for the cell C with center Cc and
volume CV is

− ∑
fi∈S

(∇niφ) fciS f i = (q)CcCV . (B.56)

Using the flux solution for (∇niφ) fciS f i given by Equation B.44 for non-orthogonal grids,
the left hand side of the equation above expands as

− ∑
fi∈S

(∇niφ) fciS f i =− ∑
fi∈S

(φNi−φC) ̸⊥corri S f i− ∑
fi∈S

(∇φ) fci · (ni− ̸⊥corri di)S f i

= ∑
fi∈S

φC ̸⊥corri S f i− ∑
fi∈S

φNi ̸⊥corri S f i− ∑
fi∈S

(∇φ) fci · (ni− ̸⊥corri di)S f i

here we use known values of φ

=
(

∑
fi∈S

αCi

)
φC + ∑

fi∈S
αNiφNi + ∑

fi∈S
βi,

(B.57)
8 Similar to the one-dimensional example for density along a segment given by Equation B.5 on page 206,

but for volumes.
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where (∇φ) f ci is computed using Equation B.68 and

αNi =− ̸⊥corri S f i,

αCi =−αNi,

βi =(∇φ) fci · (ni− ̸⊥corri di)S f i.

(B.58)

Equation B.56 now becomes(
∑
fi∈S

αCi

)
φC + ∑

fi∈S
αNiφNi + ∑

fi∈S
βi = (q)CcCV , (B.59)

which can be rewritten in the convenient form

aCφC + ∑
fi∈S

aNiφNi = bC, (B.60)

where
aC = ∑

fi∈S
αCi, aNi = αNi, bC = (q)CcCV − ∑

fi∈S
βi. (B.61)

Note that the simplified form given by Equation B.60 resembles the system Ax = b
mentioned earlier. In particular, the system of numerical equations for the diffusion equation
above is given by

A[φ ] = b, (B.62)

where A is composed of diagonal values aC j and off-diagonal values aN ji , [φ ] is the vector of all
cell values φC j , and b is the vector of all source terms bC j , with j ∈ [1,number of cells].

B.1.7 Boundary Conditions

Figure 81 – Boundary faces of the numerical domain connect to a single cell. Therefore, boundary
conditions specify field values at the face center fci. Note that the non-orthogonality may also
appear in boundary faces since the connecting vector d f i may not align to the face normal ni.

Source: Elaborated by the author.

The flux in faces that belong to the boundaries of the numerical domain requires special
treatment. Mesh boundary faces have only one cell connected, requiring a direct substitution
of values in Equation B.53. The value at the boundary must be specified at the face integration
point fc and use the direction vector d f i = fci−Cc, connecting the cell center to the face center,
unlike the previous vector di that connected two cell centers – see Figure 81. Such specifications
are called boundary conditions, and the two most common are:
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• Dirichlet Boundary Condition:

The Dirichlet boundary condition directly specifies the value of the field at the the face
center fc. In the case the diffusion equation discussed in the previous section, the fluxes in
left hand side of Equation B.56 would have a specified value for φ( fci) = φ f ci:

−(∇niφ) fciS f i =−(φ f ci−φC) ̸⊥corr f i S f i− (∇φ) fci · (ni− ̸⊥corr f i d f i)S f i

= φC ̸⊥corr f i S f i−φNi ̸⊥corr f i S f i− (∇φ) fci · (ni− ̸⊥corr f i d f i)S f i

= αCiφC +βi

(B.63)

Note that since φ f ci is given, the term respective to αN is merged to β .

• Neumann Boundary Condition:

The Neumann boundary condition directly specifies the value Ff = J f ·n f of the flux along
the normal n f of f :

J f ·Sf = J f ·n f S f

= Ff S f

= β

(B.64)

The Neumann Boundary condition is the same for non-orthogonal grids, the flux value
becomes a source term β in the final system of equations.

B.2 Finite Area Method

The Finite Area Method (FAM), introduced by Tuković (2005), is a specialization of the
FVM, described in the previous chapter, for solving PDEs on curved surfaces. Mainly, the FAM
splits the surface domain into discrete cells, called finite areas, defined by flat polygonal areas
bounded by straight edges — left side in Figure 82. Therefore, the area integral of a given cell C

representing a surface area Γ can be approximated by the midpoint rule as∫
Γ

φdΓ≈ φCCA, (B.65)

where CA is the area of C and φC is the cell value of φ in C. The cell value comes from the
midpoint approximation of the area integral, (φ)Cc , where Cc is the center point of C. In the
following, the subscript (⋆)p indicates the value of a field at the location p, (⋆)A denotes the
area of a cell, and (⋆)c denotes the center point.

Like FVMs, the discretization in the FAM also uses the divergence theorem9 and analo-
gously defines the fluxes in the edges. Each cell C may share its edge ei with the neighbor cell Ni,

9 See subsection B.1.1.
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with index i ∈ [0,number of edges of C]. The flux through the edge ei is computed in the center
point of the edge, eci, and uses the edge length vector10

Lei = mei|Lei|= meiLei, (B.66)

where mei is one of the bi-normal vectors associated with the edge ei, along with nei, and has the
same direction of eci−Cc — see right side of Figure 82.

Figure 82 – The FAM applies the strategy of FVMs on curved surface domains by discretizing the integrals
over finite areas. These cells are polygonal areas bounded by edges. The flux between two
neighbor cells, C and Ni, passes through their shared edge, ei. Each cell has a surface normal
vector nC, and each edge has two bi-normal vectors, ni and mi, which define the edge length
vector Lei.

Source: Elaborated by the author.

The discretization under the FAM scheme is analogous to the FVM, and uses Equa-
tion B.66 to compute the fluxes. Here are some examples:

• Divergent term ∇ ·u:∫
Γ

∇ ·udΓ =
∮

∂Γ

(u ·m)d∂Γ≈ ∑
ei∈E

(u)eci ·Lei, (B.67)

where m is the normal field pointing outward Γ, E is the set of edges that approximate ∂Γ,
and u(x) is a vector field.

• Scalar gradient term ∇φ :∫
Γ

∇φdΓ =
∮

∂Γ

(φm)d∂Γ≈ ∑
ei∈E

(φ)eciLei, (B.68)

where φ(x) is a scalar field.

Note that the discretizations above require the value of fields at edge centers. For scalar
fields, the value can be computed via linear interpolation or upwind schemes, as described in
10 The length vector Le is analogous to the face area vector Sf used in FVMs.
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subsection B.1.4. However, the direct interpolation of vector quantities does not guarantee a
resulting vector tangential to the domain surface.

In order to produce edge vectors that are tangential to the domain surface, the cell vector
quantities are interpolated in their local cell coordinates. A different local coordinate system for
each cell is defined based on the target edge. Figure 83 shows the local coordinate systems used
in the interpolation between two cells, C and Ni. The local coordinates of the cell C is composed
by the surface normal vector nC, and two tangential vectors, tC = eci−Cc

∥eci−Cc∥ and vC = tC×nC.

Figure 83 – Interpolations of cell vector quantities to the center of edges use local coordinates defined in
each point to guarantee surface-tangential resulting vectors.

Source: Elaborated by the author.

Let T⋆ be the transformation into the local coordinates system of C, Ni, or ei. Then the
interpolation of the vector field u into the edge center eci is given by

(u)eci = T−1
ei
(wiTCuC +(1−wi)TNiuNi), (B.69)

where wi is the interpolation factor.



223

APPENDIX

C
OPENFOAM

OpenFOAM1 is an open-source software that serves as a C++ toolbox for developing
numerical solutions for various CFD problems. The OpenFOAM Foundation maintains and
distributes the source code under the GNU General Public License Version 3. Due to its open
access, flexibility, and robustness, OpenFOAM established a large community of users and
developers in academia, research institutions, and industry. Its success is because OpenFOAM
provides convenient usage of its wide variety of solvers for users, and its architecture benefits
developers who need to modify existing solvers or create new ones.

Primarily, OpenFOAM uses the Finite Volume Method to discretize and solve a given
set of PDEs — see section B.1. Once a finite volume mesh representing the solution domain
contains the fields of the variables for a given set of equations, OpenFOAM’s discretization
functions offer a direct way to express the equations in code. Take, for example, the equation:

∂T
∂ t

+∇ · (T u) = 0, (C.1)

for a scalar field T transported by a velocity field u. In OpenFOAM the equation is transcribed
to Source code 4. See section C.2 for a list of discretization functions.

Source code 4 – OpenFOAM’s version of Equation C.1 for C++.

1: solve (

2: fvm :: ddt(T) + fvm :: div(u, T)

3: );

This chapter introduces the concepts and pieces of OpenFOAM relevant to the project.
Refer to Jasak, Jemcov and Tuković (2007) for a general introduction on the code design,
Holzmann (2016) for mathematical derivations on OpenFoam, and Darwish and Moukalled
(2016) for a comprehensive material on Finite Volume method applications in OpenFOAM.
1 The name OpenFOAM stands for Open-source Field Operation And Manipulation.
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C.1 Field Representations
OpenFOAM can represent dimensional and dimensionless scalar, vector, and tensor

variable fields. Many field operations have convenient C++ operators, such as the dot-product for
two vector fields listed in Source code 5.

Source code 5 – OpenFOAM provides operators for common operations. For example, the &
operator performs the scalar product between two vector fields a and b.

1: scalarField c = a & b;

OpenFOAM defines Geometric Fields as the spatial distribution of the physical quantities
over the physical domain for which the solution is calculated. A geometrical mesh decomposes
the domain into disjoint cells called volumes. Field values are then stored in specific locations
inside each volume to possibilitate the numerical discretizations of the equations. Such locations
describe the quantities of a particular field over the physical domain. The discretization defines
the proper location of each field in the mesh, and fields can be assigned to vertex positions, face
centers, or cell centers as shown in Figure 84.

Figure 84 – Common mesh locations for field spatial locations in the physical domain, from left to right,
vertices, face centers, and cell centers.

Source: Elaborated by the author.

In particular, OpenFOAM utilizes a data structure for the numerical mesh called poly-

Mesh. The polyMesh structure can handle polyhedral cells bounded by arbitrary polygonal faces.
This configuration allows unstructured meshes with different types of elements containing a
variable amount of faces, however, with specific requirements:

• Cells must be convex;

• Every edge in the cell must be used by exactly two faces of the same cell;

• Cells must not overlap one another.

The central element in the polyMesh is the face, which provides the mesh’s topology.
Each face connects at most two cells and obligatorily belongs to one of the connecting cells,
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called the owner. Thus, each face is associated with an owner and may or may not connect to a
second cell called the neighbor — boundary faces do not have their neighbor cell. The orientation
of a face determines which cell is its owner cell, producing consistent indexing throughout the
mesh. In particular, the face’s normal always points outwards the owner cell — see Figure 85.

Figure 85 – The polyMesh structure associates a owner cell and a neighbor cell for each face based on
the face’s orientation. The normal of a face always points outwards the owner cell, see the
left figure. Consequently, the normals at the boundaries also point outwards the numerical
domain, on the right.

Source: Elaborated by the author.

OpenFOAM makes a distinction between internal faces and boundary faces. Boundary
faces are faces that are connected to only a single cell, the owner cell. However, boundary faces
additionally carry extra information that the solver uses to define the boundary conditions for the
numerical system. Defining fields stored only by boundary or internal faces is also possible.

C.2 Discretizations
This section lists some of the discretization functions provided by OpenFOAM for the

terms encountered in equations. As described in subsection B.1.6 on page 218, the discretizations
compose the final system of numerical equations:

Ax = b, (C.2)

where x is the set of unknowns, A is the matrix of discretized coefficients, referred to as implicit

terms, and b contains the source terms, also referred to as explicit terms. Therefore, known
values marked by the superscript (⋆)o, including values from previous time steps i, (⋆)n−i, are
handled as explicit terms.

OpenFOAM provides two modules with discretization functions for implicit and explicit
terms, called fvm and fvc, respectively. Values are naturally computed and stored in cell centers,
marked in the equations by the subscripts (⋆)Cc and (⋆)Nci . Values computed at face centers
are marked with the subscript (⋆) fci . In the following, the discretizations consider a cell C with
volume CV and center Cc.
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• fmv::ddt(⋆)

– First-Order Implicit Euler(
∂⋆
∂ t

)
Cc
≈ CV

∆t
((⋆)n− (⋆)n−1)Cc . (C.3)

– Second-Order Implicit Euler(
∂⋆
∂ t

)
Cc
≈ CV

2∆t

(
3(⋆)n−4(⋆)n−1 +(⋆)n−2

)
Cc
. (C.4)

• fmv::div(Φo,⋆)

∇ · (Φo⊗⋆)Cc ≈ ∑
fi∈S

(Φo⊗⋆) fci, where Φ fci = (ρu)o
fci
. (C.5)

– Interpolation

∑
fi∈S

(wiΦ
o) fci⊗ (⋆)Cc + ∑

fi∈S
((1−wi)Φ

o) fci⊗ (⋆)Nci, (C.6)

where wi is the interpolation weight based on the cell center to face centers distances,
dC = fci−Cc and dNi = Nci− fci:

wi =
n ·dNi

n · (dC +dNi)
. (C.7)

– Upwind

(⋆) fci =

(⋆)Cc , Φo
fci
≥ 0,

(⋆)Nci , Φo
fci
< 0.

(C.8)

• fvm::laplacian(⋆)2

(△⋆)Cc ≈ ∑
fi∈S

(∇ni⊗⋆) fciS f i

≈ aC(⋆)Cc + ∑
fi∈S

aNi(⋆)Ni +bC.
(C.9)

• fvc::flux(⋆)

(⋆) fc ·Sf. (C.10)

• fvc::interpolate(⋆)
(⋆) fc = λC⋆C +λN⋆N . (C.11)

• fvc::grad(⋆)

(∇⊗⋆)Cc ≈
1

CV
∑
fi∈S

(⋆) fci⊗Sfi. (C.12)

2 See subsection B.1.6.
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• fvc::div(⋆)

(∇ ·⋆)Cc ≈
1

CV
∑
fi∈S

(⋆) fci ·Sfi. (C.13)

• MULES::explicitSolve

OpenFOAM provides a Flux Corrected Transport (FCT)3 method implementation called
Multidimensional Universal Limiter for Explicit Solution (MULES) (DAMIáN; NIGRO,
2014). The FTC method guarantees boundedness in the solution of the convection equation
by computing the flux Φ as Equation B.52

Φ = Φ
L +λ (ΦH−Φ

L),

where ΦL and ΦH are fluxes computed from low-order and high-order methods, respec-
tively, and λ is computed iteratively. MULES solves explicitly the transport equation

∂φ

∂ t
+∇ ·Φ = 0 (C.14)

for a scalar field φ through the discretization

φ
n+1 = φ

n− ∆t
CV

∑
fi

(Φ)n
f ci. (C.15)

The procedure for computing the values of λ uses local and global extrema for φ n, as
detailed by section 2.6.3 in Damian (2013).

An equivalent set of functions for the FAM is provided by OpenFOAM with the corre-
spondent function namespaces fam and fac.

C.3 Numerical Algorithm
Physical models such as the Navier-Stokes Equations for imcompressible flows

∇ ·u = 0, (C.16)

∂u
∂ t

+∇ · (u⊗u) =− 1
ρ

∇p−∇ · τ +g, (C.17)

τ = 2µD− 2
3

µ(∇ ·u) and D =
1
2
(∇⊗u+(∇⊗u)T ) (C.18)

belong to the family of coupling problems. That is because Equation C.17 equation couples
velocity and pressure, which poses an initial challenge to the solution of the problem4. The
solution is only possible because Equation C.16 adds extra conditions for the velocity. Moreover,
the non-linear nature of the equation requires iterative methods for this solution. The example of
algorithm below splits the equations, so each iteration i performs the following steps:
3 See subsection B.1.5.
4 There are three momentum equations, one for each velocity component, but four unknown variables,

the three velocity components, and the pressure.
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1. Use the previously computed (or estimated) values ui−1 and pi−1, and solve for u⋆:

∂u⋆

∂ t
+∇ · (ui−1⊗u⋆) =− 1

ρ
∇pi−1−∇ · τ⋆+g,

τ
⋆ = ν∇⊗u⋆+ν(∇⊗u⋆)T − 2

3
ν(∇ ·u⋆)I,

Au⋆ = b

(C.19)

where ν = µ/ρ . Note that the non-linearity of the advection term is solved by the use of
ui−1, allowing the use of advection schemes (see subsection B.1.5). This step is generally
referred to as momentum prediction.

2. Use the intermediary velocity field u⋆ solve the pressure equation5 for pi:

1
ρ

∇
2 pi +∇ · (∇(u⋆⊗u⋆)) = 0,

A[pi] = b.
(C.20)

3. Use u⋆ and pi to correct the values of u for the next step. As explained later, this process
includes a flux correction and a momentum correction. The result is ui, which becomes the
ui−1 in the next iteration, and the same happens to pi.

The prediction-correction algorithm above follows the idea of the well known Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) (PATANKAR; SPALDING, 1983)
algorithm. However, the SIMPLE algorithm is primarily designed to only solve steady-state
problems, which is not the case of the equations listed above. Transient solutions can be achieved
through the variations of the SIMPLE algorithm called Pressure Implicit with Splitting of
Operators (PISO) (ISSA, 1986), and the widely used combination of both, the PIMPLE algorithm.
OpenFOAM provides the implementation for all the three algorithms.
5 The equation above comes from applying the divergence operator on the momentum equation, Equa-

tion C.17, and using the continuity equation, Equation C.16, (assuming ν constant):

�
�
��>

0
∂∇ ·u

∂ t
+∇ · (∇ · (u⊗u)) =− 1

ρ
∇ · (∇p)−∇ · (∇ · τ

expand

)+�
��*

0
∇ ·g

∇ · (∇ · (u⊗u)) =− 1
ρ

∇ · (∇p)−∇ · (∇ · (ν∇⊗u)+∇ · (ν(∇⊗u)T )

≡

−
��������:02
3

∇ · (µ(∇ ·u)I))

∇ · (∇ · (u⊗u)) =− 1
ρ

∇ · (∇p)−∇ · (∇ · (ν∇⊗u))
≡

−∇ · (�����:0
ν∇(∇ ·u)+���*0

(∇ν) · (∇⊗u))

1
ρ

∇
2 p+∇ · (∇ · (u⊗u)) =�����:0

∇
2(∇ ·u)
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The PISO algorithm repeats the steps 2 and 3 in order to improve the accuracy of the
output values of velocity and pressure within each time step, which increases the accuracy of the
transient term in step 1. In turn, The PIMPLE algorithm essentially adds another loop, including
step 1 and the PISO loop, within each time step. The main advantage of the PIMPLE algorithm
is that it can handle larger Courant numbers6 Co >> 1, leading to larger simulation time steps.

In order to describe the PIMPLE algorithm, let us put the pressure term −∇p aside
from the momentum equation system Au = b and separate the diagonal from the matrix A, so
A = Adiag +Ao f f , where Adiag is the matrix containing the only the diagonal entries of A and
Ao f f contains the off-diagonal entries. Let B(u) be a function of u representing all off-diagonal
elements and source terms,

B(u) =−Ao f f u+b, (C.21)

so the original system, with the pressure term, is reconstructed as

Adiagu = B(u)−∇p. (C.22)

Since Adiag is a diagonal matrix, it will be used as a scalar field Adiag in the following equations.
The momentum correction is expressed as

u← B(uo)

Adiag
− ∇po

Adiag
, (C.23)

where uo and po represent previous (or intermediary) values, which are essentially explicit terms
in the system above. The same procedure can be applied to the flux correction of Φ f :

Φ f ← Sf ·
(B(u)

Adiag

)
f
−
( |Sf|

Adiag

)
f
∇n p f . (C.24)

The pressure equation, Equation C.20, becomes

∇ · 1
Adiag

∇p = ∇ ·
(B(u)

Adiag

)
, (C.25)

and will use the previous equations. As characterized in the first step of the algorithm de-
scribed earlier, the momentum prediction7 computes an intermediary velocity field u∗ from
previous/initial states of uo and po.

As mentioned, the PIMPLE algorithm loops over the prediction-correction scheme
within each time step, where the correction half contains the PISO loop. The outer loop, called
the PIMPLE loop, increases the system’s overall accuracy and allows for Co > 1. For non-
orthogonal meshes, an extra loop adds the non-orthogonal contribution Vcorr(∇p) = (∇p) fc ·Vf

6 The Courant number Co = u∆t
∆x measures how fast information travels through the numerical grid. A

Co > 1 means that a fluid particle will move a distance greater than one cell length. The Co has direct
relation to the convergence of the numerical algorithm.

7 This text omits some details about the momentum prediction step. In reality, the system is partially
solved first, through under-relaxation, using the momentum equation without the pressure term. Then,
it is solved again with the pressure term included.
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to the discretization of the pressure equation — see subsection B.1.4 on page 213. Essentially,
the computed pressure p is fed back as po to the same equation as an explicit term for the
non-orthogonal term:

∇ · 1
Adiag

∇p = ∇ ·
(B(u)

Adiag

)
+Vcorr(∇po). (C.26)

Figure 86 illustrates the description above and Source code 6 shows an example of the controls
OpenFOAM provides for the PIMPLE algorithm. In OpenFOAM, the number nCorrectors
correspond to the number of PISO loops, nOuterCorrectors to PIMPLE loops, and for the
non-orthogonal correction loops described above, nNonOrthogonalCorrectors.

Source code 6 – Example of configuration of the PIMPLE algorithm in OpenFOAM.

1: PIMPLE

2: {

3: momentumPredictor yes;

4: nOuterCorrectors 1;

5: nCorrectors 2;

6: nNonOrthogonalCorrectors 2;

7: }

This section only briefly describes the type of numerical algorithm provided by Open-
FOAM. Therefore, many details not mentioned deserve attention, such as solvers of linear
systems of equations, accuracy, under-relaxation, and convergence. Refer to Greenshields and
Weller (2022) for a comprehensive introduction on all topics.
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Figure 86 – The PIMPLE algorithm alternates between prediction and correction phases by nested loops.
The loops are executed within each main iteration, guaranteeing the method’s accuracy and
convergence for larger time steps.

Source: Elaborated by the author.
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